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Introduction

Strain imaging has proven to be a useful tool in assessing myocardial health (D’hooge et al 2000, Abraham et al 
2007, Dandel et al 2009, Smiseth et al 2016). Myocardial Elastography (Konofagou et al 2002, Lee et al 2007), a 
cardiac strain imaging technique developed by our group, is the particular focus of this study; its applications 
include tracking ischemia progression in canines (Lee et al 2011), lesion monitoring during RF ablation in 
canines and humans (Grondin et al 2015, Bunting et al 2018), and quantitatively differentiating ischemic from 
normal patients as validated by nuclear imaging and angiography (Grondin et al 2017b).

Although there are a number of different approaches to estimating cardiac strain with ultrasound (Cikes et al 
2014), it is well understood that accurate strain estimation is contingent on a frame rate higher than those nor-
mally used in clinical B-modes (D’hooge et al 2000, Konofagou et al 2002, Chen et al 2009, Bunting et al 2014). 
Composite focused imaging with ECG gating allows for high spatial and temporal resolution at a full field of 
view: partial views of the myocardium are imaged over multiple heartbeats, and a composite image is generated 
by combining the sectors at appropriate time-points in accordance with the ECG (Wang et al 2008). However, 
this approach is vulnerable to artifacts such as irregular ventricular rhythms, and cannot be used in subjects 
unable to maintain a sufficiently long breathhold (~7 s). In order to estimate strain with a single cardiac cycle, 
a partial transmit aperture may be employed, which forms a less-focused and wider beam (Shattuck et al 1984, 
Von Ramm et al 1991, Provost et al 2011). Focused imaging with wide beams enables full field-of-view imaging 
with fewer beams compared the composite focused approach. Unfocused imaging with diverging waves is an 
alternative to these focused transmit approaches. Coherent compounding sets multiple virtual sources behind 
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Abstract
Unfocused ultrasound imaging, particularly coherent compounding with diverging waves, is a 
commonly employed high-frame rate transmit strategy in cardiac strain imaging. However, the 
accuracy and precision of diverging wave imaging compared to focused-beam transmit approaches 
in human subjects is unknown. Three transmit strategies—coherent compounding imaging, 
composite focused imaging with ECG gating and narrow-beams, and focused imaging with wide-
beams—were compared in simulation and in transthoracic imaging of healthy human subjects 
(n  =  7). The focused narrow-beam sequence estimated radial end-systolic cumulative strains of 
a simulated left ventricular deformation with 26%  ±  1.5% and 34%  ±  1.5% greater accuracy 
compared with compounding and wide-beam imaging, respectively. Strain estimation precision 
in transthoracic imaging was then assessed with the Strain Filter on cumulative end-systolic radial 
strains. Within the strain values where statistically significant differences in precision (E(SNRe|ε)) 
were found between transmit strategies, the narrow-beam sequence estimated radial strain 
13%  ±  0.71% and 34%  ±  8.9% more precisely on average compared to compounding or wide-
beam imaging, respectively.
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the transducer surface, enabling high frame rates (Hansen et al 2014, Papadacci et al 2014, Porée et al 2015, Apos-
tolakis et al 2017, Grondin et al 2017, Nayak et al 2017, Sayseng et al 2018).

Prior reports have compared unfocused and focused transmit approaches. Park et al compared plane wave 
imaging against focused imaging in a simulated phantom, finding that the former offered inferior or equiva-
lent displacement and strain SNR compared to the latter, depending on distance from the focal zone (Park et al 
2007). Montaldo et al compared the resolution, contrast, and SNR of the B-mode images in tissue-mimicking 
phantoms, finding that plane wave compounding offered comparable performance as focused approaches but 
at a much higher frame rate (Montaldo et al 2009). Verma and Doyley reported that compounded plane wave 
imaging generated higher axial and lateral SNRe in simulated and phantom quasi-static elastography compared 
to a focused sequence employing a transmit and receive subaperture (Verma and Doyley 2017). Grondin et al 
compared compounding against conventional focused imaging in simulation, and found near-equivalent axial, 
lateral, and radial strain error (Grondin et al 2017). However, these studies were limited to simulation or phan-
tom models. Furthermore, to the best of the authors’ knowledge, a comparison between diverging wave imaging 
and focused approaches in human subjects has yet to be performed.

This study aimed to determine the optimal transmit approach for transthoracic parasternal short-axis strain 
imaging by comparing the radial strain estimation accuracy and precision of three transmit strategies, all pre-
viously employed by our group: composite focused imaging with narrow beams (Pernot et al 2007), focused 
imaging with wide beams (Provost et al 2011), and coherently compounded diverging wave imaging (Sayseng 
et al 2018). The transmit sequences were investigated in simulation to compare strain estimation accuracy, and 
in transthoracic imaging of healthy human subjects to compare strain estimation precision via the Strain Filter. 
Unlike previous reports, where the low frame rate of conventional focused transmit approaches precluded RF-
based strain estimation outside of quasi-static elastography, implementation of ECG gating and widened beams 
allowed for comparison of strain estimation accuracy and precision against compounding.

Materials and methods

Description of transmit strategies
Simulated and in vivo imaging was performed with a phased array (2.5 MHz, 64 elements, 0.32 mm pitch). The 
transmit parameters employed in simulation and in in vivo transthoracic imaging were identical. The three 
transmit approaches investigated in this study are graphically summarized in figure 1.

Composite focused imaging with narrow beams and ECG gating entails imaging the heart over multiple 
cycles to allow for the development of a composite strain image (Wang et al 2008). The full-view is divided into 
sectors that are acquired over different cardiac cycles. ECG gating synchronizes the sectors temporarily with the 
cardiac cycle, and the patient is required to perform a breathhold to control for translation of the myocardium 
during the respiratory cycle. A five-sector ECG-gated focused transmit sequence featuring a 75-beam acquisition 
over a 90° field-of-view at 3000 Hz pulse repetition frequency (PRF) was employed. Axial focal length was set to 
60 mm. Beamwidth, defined as the full-width half-maximum (FWHM) of the Field II simulated pressure output 
at the focus, was 3.7°.

Focused imaging with wide beams uses only a portion of the full transmit aperture (subaperture) to widen 
the beams. This enables reconstruction of more lines per transmit compared to the ECG gated narrow-beam 
approach, thus allowing for full field-of-view high frame-rate imaging over one cardiac cycle. A wide-beam 
sequence featuring a subaperture of 25 elements with 30 transmitted beams over a 90° view at 3000 Hz PRF was 
employed. Axial focal length was set to 60 mm. The beamwidth was equal to 7.4°, twice that of the ECG-gated 
focused configuration.

The coherently compounded sequence used diverging waves by setting multiple virtual sources behind the 
element array. Compounding enables full field-of-view imaging over one cardiac cycle. A full transmit aperture 
was employed, with steered diverging waves characterized by the number of virtual sources, angular aperture, 
and tilt angle. A previous study from our group reported that the optimal transmit parameters to maximize 
strain estimation accuracy and precision in steered compounding at a 3000 Hz PRF were as follows: ten virtual 
sources, 60° angular aperture, and 15° tilt (Sayseng et al 2018).

Reconstruction of radiofrequency (RF) signals for all three transmit strategies was performed with a delay-
and-sum parallel beamformer as described in previous reports (Grondin et al 2017b, Sayseng et al 2018). The 
polar reconstruction grid featured a 90° field-of-view with 180 lines, 77 µm axial sampling, and 14 cm depth. In 
the ECG-gated focused configuration, two or three reconstructed lines were generated from one transmit beam. 
In the wide-beam configuration, six reconstructed lines were generated from one transmit beam without over-
lapping lines.

While all three transmit strategies employed the same PRF (3000 Hz), the motion estimation rate (MER) 
 differed between transmit approaches. PRF is the inverse of the time interval between successive transmits. MER 
is the inverse of the time interval between successive transmit sets, i.e. the inverse of the time interval between 
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complete acquisitions used for displacement estimation. A wide-beam set consisted of 30 focused beams; for 
compounding, a set consisted of ten diverging waves from each virtual source. Consequently, MER for wide-
beam and compounding were 100 Hz and 300 Hz respectively. For composite focused imaging, the full field-of-
view consisted of five sectors imaged at different cardiac cycles, with 15 focused beams employed for each sector. 
The resulting MER was thus 200 Hz.

Simulation of left-ventricular contractions
A previously described simulation model in Field II was employed (Sayseng et al 2018). Briefly, the left ventricle 
at end-systole in the parasternal short-axis view was simulated as a symmetrically thickening cylinder (20 mm 
length, 10 mm thickness) including torsion and out-of-plane displacement: 1.5 mm and 4.5 mm inward radial 
displacement of the outer and inner walls, respectively; 3.0 mm out-of-plane displacement; and 4° and 8° 
rotation of the outer and inner walls, respectively. Cumulative radial thickening of the 10 mm thick cylinder 
was 30% at simulated end-systole. Interframe motion was simulated between each diverging and focused 
transmit. Systole was simulated over 450 time points, generating 45, 30, and 15 frames of complete acquisitions 
for the compounding, ECG-gated focused, and wide-beam configurations, respectively. RF data was generated 
using a simulated cardiac phased array (2.5 MHz, 64 elements, 0.32 mm pitch). Bandlimited noise matching 
the frequency spectrum of the simulated probe, a P4-2 (ATL/Philips, Andover, MA, USA), was added to the 
RF signals to simulate decorrelation. Signal magnitude was ten times that of the additive noise. Five trials with 
unique randomized noise sets were generated to account for potential variability in the strain estimation due to 
decorrelation.

Axial and lateral displacements were estimated from the beamformed RF signals using a 1D normalized 
cross-correlation kernel (4.4 mm window, 10% overlap) in a 2D search (Lee et al 2007). To increase the acc-
uracy of the lateral estimation, a 10:1 linear interpolation between adjacent RF lines was performed (Konofagou 

Figure 1. Schematic of the three transmit strategies investigated in this paper. (a) Composite focused imaging uses narrowly 
focused beams to image a small field-of-view across several cardiac cycles. The sectors are then combined using ECG gating to create 
an image with a full field-of-view. (b) Wide-beam focused imaging generates a focused beam with a wider main lobe by employing 
subaperture transmits, allowing for full field-of-view imaging in one cardiac cycle at high frame rates. (c) Steered compounding 
generates diverging waves with full aperture transmits via virtual sources placed behind the array.
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and Ophir 1998), and a recorrelation method was implemented for three iterations for further refinement (Lee 
et al 2007). Cosine interpolation was applied to achieve subsample displacement estimation (Lee et al 2007). A 
least-squares strain estimator with a window of 3.9 mm by 4° was applied to the accumulated displacements to 
calculate axial and lateral cumulative strains using the Lagrangian strain tensor (Kallel and Ophir 1997). Radial 
cumulative strains were then estimated from the 2D strain tensor. Axial, lateral, and radial strain definitions are 
provided in the appendix. Strains were smoothed with a 4.8 mm by 5.0° median filter.

Strain estimation accuracy was evaluated by comparing the estimated axial, lateral, and radial cumulative 
strains (ε̂) against the theoretical, end-systolic cumulative strains (ε). Two metrics, absolute and relative error, 
were implemented to assess accuracy. The absolute strain error, δε̂, was defined as:

δε̂(%) =
»

(ε− ε̂)
2, (1)

where ε and ε̂ are theoretical and estimated cumulative strain matrices at end-systole, respectively. δε̂ allows for 
spatial localization of error.

The relative strain error expressed as a normalized scalar, ∆ε̂ :

∆ε̂ (%) =

∑n
i=1

√
(ε(i)− ε̂(i))2

∑
|ε(i)|

∗ 100, (2)

where ε and ε̂ are n-element theoretical and estimated cumulative strain matricies within the masked region, 
respectively. The normalized error between transmit strategies for a given cumulative strain type was compared 
via one-way ANOVA and Tukey multiple comparison procedure in MATLAB (Natick, MA, USA). The mean 
normalized errors across the five simulated trials was reported.

In vivo myocardial imaging
The precision of each transmit strategy was compared via transthoracic imaging of healthy human subjects. The 
study protocol was conducted with approval from the Institutional Review Board of Columbia University. All 
three transmit strategies met the FDA limits on acoustic output. Participants were informed of the study’s risks, 
and consent was obtained prior to any imaging. A trained sonographer acquired parasternal short-axis images of 
the left ventricle at the level of the papillary muscle in seven subjects (25–37 years, male). Images were acquired 
with an ATL P4-2 phased array probe connected to a research ultrasound system (Verasonics Vantage, Verasonics 
Redmond, WA, USA). A custom sequence was designed that imaged at 3000 PRF with the following sequences in 
succession: a 7.5 s focused sequence (75 beams, five sectors), a 1.5 s steered compounding sequence (ten virtual 
sources, 60° angular aperture, 15° tilt), and a 1.5 s wide-beam sequence (30 beams, one sector). Combining 
the three transmit strategies within the same sequence ensures that differences in myocardial mechanics were 
minimal, and that the sonographic view was as consistent as possible between transmit configurations. ECG data 
was collected in conjunction with the ultrasound acquisition and used to identify systole.

Displacement and strain estimation were performed as described in the previous section. A low motion 
estimation rate (MER) in the lateral displacement (approximately 100 Hz) was shown to result in a more pre-
cise strain estimation (Sayseng et al 2018). Consequently, the beamformed RF matrix from the ECG-gated and 
focused acquisitions was downsampled temporally to a MER of 100 Hz (in the case of the wide-beam sequence, 
downsampling was not necessary). The resulting lateral displacements were then upsampled to match the origi-
nal acquisition frame rate to allow calculation of the 2D strain tensor with the axial displacements. Cumulative 
radial strain was estimated throughout systole. Systole was defined based on the axial displacement through time 
of the ultrasound line at the center of the myocardium. A mask was manually outlined based on assessment of the 
B-mode at end-diastole. Only strain values within the mask were used in analysis.

The Strain Filter was used to compare the precision between transmit strategies (Lee et al 2007, Bunting et al 

2014). Elastographic signal-to noise ratio (SNRe =
µ(ε)
σ(ε)) measures precision as the ratio of the mean strain to 

the standard deviation within a small ROI (1.5 mm2). Translating the SNRe window throughout the masked area 
of cumulative strain generates strain-SNRe pairs. The resulting probability density function (pdf) of SNRe was 
normalized to control for strain values that occur more frequently, generating the conditional pdf or f(SNRe|ε). 
To simplify the 2D conditional pdf, and to more easily compare precision between transmit approaches, expected 
SNRe was calculated as

E (SNRe|ε) =
ˆ +∞

0
SNRef (SNRe|ε) dSNRe. (3)

The Strain Filter was used to evaluate end-systolic cumulative radial strains prior to median filtering; that is, 
the E(SNRe|ε) of the unfiltered strains was reported. In contrast to previous applications of the Strain Filter 
(Bunting et al 2014, Sayseng et al 2018), the sign of ε was preserved when calculating E(SNRe|ε). The E(SNRe|ε) 
of each subject was calculated for the three transmit strategies investigated. The mean E(SNRe|ε) of each transmit 
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strategy across subjects was statistically compared at each ε bin via a one-way ANOVA and Tukey multiple 
comparison procedure with MATLAB (2017b, Natick, MA , USA). Graphically, significant (p   <  0.05) differences 
in E(SNRe|ε) between transmit strategies for a given value of ε were denoted with a marker.

The strain estimation precision of Myocardial Elastography based on cardiac wall segment was investigated. 
The mask for a given subject was divided into two segments: an axial segment comprised of the anterior and 
posterior walls of the myocardium, and a lateral segment comprised of the left lateral and septal walls. The Strain 
Filter was used to investigate the precision of each segment in measuring in vivo radial strain with the focused 
narrow-beam sequence.

Results

Analysis of simulation
Resolution of the transmit strategies was investigated by imaging a simulated point 60 mm away from the 
transducer in Field II using the transmit approaches and parameters detailed in the Methods. PSF curves are 
summarized in figure 2. The width of the principal lobe at  −6 dB for the focused narrow-beam, wide-beam, and 
compounding were 1.4 mm, 2.4 mm, and 2.6 mm, respectively.

The Lagrangian axial, lateral, and radial strains estimated by the transmit strategies are summarized in fig-
ure 3. Figure 4 summarizes the spatial distribution of absolute error, δε̂, in the estimated axial, lateral, and radial 
strains obtained with each transmit strategy. For all three transmit approaches, the errors in the radial strain 
estimation are primarily due to the errors in the lateral strain estimate. The accuracy of transmit strategies was 
further compared using the mean relative error, ∆ε̂, across the five simulated trials (figure 5). The focused nar-
row-beam sequence was the most accurate (∆ε̂ axial  =  24%, ∆ε̂ lateral  =  47%, ∆ε̂ radial  =  27%), followed by the 
compounding sequence (∆ε̂ axial  =  27%, ∆ε̂ lateral  =  57%, ∆ε̂ radial  =  37%), and focused wide-beam sequence 
(∆ε̂ axial  =  29%, ∆ε̂ lateral  =  67%, ∆ε̂ radial  =  42%). Strain estimation error was significantly different (p   <  0.001, 
Tukey multiple comparison) between the transmit strategies (figure 5). Thus, across the five simulated trials, 
narrow-beam estimation of radial strain was more accurate by 26%  ±  1.5% and 34%  ±  1.5 compared to com-
pounding and wide-beam imaging, respectively. Compounding radial strain estimation had 12%  ±  2.4% less 
error relative to wide-beam imaging.

Analysis of transthoracic imaging
The radial strains of one subject imaged with the custom sequence is summarized in figure 6. The radial strain 
estimated by all three transmit strategies was as expected, showing myocardial thickening over systole (figure 6).

The cumulative radial strains were analyzed quantitatively with the Strain Filter, as summarized in figure 7. 
The focused narrow-beam sequence performs with the highest precision compared to the compounding and 
focused wide-beam sequences. Within the strain values where statistically significant differences in the E(SNRe|ε) 
were found between transmit strategies (p   <  0.05, Tukey multiple comparison), the narrow-beam sequence esti-
mated radial strain 13%  ±  0.71% more precisely on average compared to the compounding sequence within the 
ε range [25%, 40%], and 34%  ±  8.9% more precisely on average compared to the wide-beam sequence within 

Figure 2. Point spread function (PSF) generated by the three transmit strategies when imaging a simulated point at the focus (60 mm).
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the ε range of [4.5%, 60%] (figure 7). The compounding sequence was 23%  ±  6.6% more precise on average 
compared to the wide-beam approach in the ε range of [10%, 40%] (figure 7).

Finally, the Strain Filter was used to investigate the precision of the strain estimator in the axial segments 
(anterior and posterior walls) versus lateral segments (left lateral and septal walls) when using the focused nar-
row-beam sequence (figure 8). The precision of the axial segments was on average 50%  ±  14% higher than that 
of the lateral within the ε ranges of [6.0%, 60%] (p   <  0.05, Student’s t-test).

Discussion

Identification of the transmit strategy that yields the most precise and accurate strain estimation is a critical 
step in ensuring that ultrasound cardiac strain imaging offers maximum utility in the clinic. The accuracy and 
precision of strain estimation using composite focused narrow-beam imaging, coherent compounding imaging, 
and focused wide-beam imaging was determined in simulation and in vivo transthoracic imaging. In simulation, 
it was determined that focused narrow-beam imaging estimates axial, lateral, and radial strain the most 
accurately, followed by the compounding approach; the focused wide-beam estimation yielded the largest error. 
In vivo quantitative assessment of the strain estimates using the Strain Filter was consistent with the simulation 
results: the focused narrow-beam approach was the most precise, followed by compounding and then focused 
wide-beam imaging, respectively.

Analysis of the absolute error maps of the radial (figure 4) strains in simulation clearly demonstrate that the 
error in the radial strains originates from the lateral estimation; note the similarity in the spatial distribution of 
error (figures 4(d)–(f) versus figures 4(g)–(i)). In the lateral and radial strain estimates in simulation, error is 
concentrated in the left lateral and septal walls (figure 4). This observation is corroborated by comparing the rela-
tive error of the lateral strain estimation (∆ε̂ lateral,narrow  =  47%, ∆ε̂ lateral,compound  =  57%, ∆ε̂ lateral,wide  =  67%) 
with the axial (∆ε̂ axial,narrow  =  24%, ∆ε̂ axial,compound  =  27%, ∆ε̂ axial,wide  =  29%) (figure 5). Finally, the Strain 
Filter was used to investigate the precision of the strain estimator in the axial segments (anterior and posterior 
walls) versus lateral segments (left lateral and septal walls) (figure 8). The precision of the strain estimator in the 
axial segments was superior to that in the lateral segments, on average 50%  ±  14% higher within the ε ranges of 
[6.0%, 60%].

The qualitative differences in the cumulative strains between the transmit strategies both in simulation  (figure 
3) and in transthoracic imaging (figure 6) were largely subtle. However, the quantitative metrics employed in this 
paper—absolute (figure 4) and relative (figure 5) error to compare simulated strain estimates, and the Strain 

Figure 3. Cumulative axial (a)–(c), lateral (e)–(g), and radial (i)–(k) strains calculated from a synthetic systolic left ventricle 
simulated in Field II as imaged by composite focused narrow-beam, compounding, and focused wide-beam transmit sequences. 
Strains calculated based on theoretical displacements (d), (h) and (l) were generated for validation.

Phys. Med. Biol. 65 (2020) 03NT01 (11pp)
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Figure 4. Absolute error (δε̂) in axial (a)–(c), lateral (d)–(f), and radial (g)–(i) strain calculations using composite focused narrow-
beam, compounding, and wide-beam transmit sequences to image a simulated systolic left ventricle.

Figure 5. Relative strain error ∆ε̂  in calculating radial strains using ECG-gated focused narrow-beam, compounding, and focused 
wide-beam transmit strategies to image a simulated systolic left ventricle. Mean ∆ε̂  was calculated across five trials. ∆ε̂  between 
transmit strategies was statistically compared via one-way ANOVA and Tukey multiple comparison procedure (***p   <  0.001).

Phys. Med. Biol. 65 (2020) 03NT01 (11pp)
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Filter to examine in vivo strains in seven healthy human subjects (figure 7)—were clear in their conclusions that 
the focused narrow-beam sequence provided the best radial strain estimation in terms of accuracy and precision, 
followed by the compounding and focused wide-beam approaches, respectively. As summarized in figure 5, nar-
row-beam imaging estimated radial strain with 26%  ±  1.5% and 34%  ±  1.5 less error compared to compound-
ing and wide-beam imaging in simulation, respectively. In vivo, figure 7 demonstrates that within the strain range 
in which statistically significant differences in precision were found between transmit approaches, the focused 
narrow-beam approach estimated strain 13%  ±  0.71% and 34%  ±  8.9% more precisely on average compared to 
compounding and focused wide-beam imaging, respectively.

The superior performance of the focused narrow-beam sequence may be explained by comparing the PSF 
generated by each transmit strategy. As summarized in figure 2, the width of the principal lobe at  −6 dB was sub-
stantially smaller when employing focused narrow-beam imaging (1.4 mm) compared to focused wide-beam 
or compounding imaging (2.4 and 2.6 mm, respectively). Furthermore, the magnitude of the side lobes gener-
ated by the focused narrow-beam sequence are smaller compared to the other two transmit strategies. Based on 
analysis of the PSF, the focused narrow-beam sequence offers higher resolution and less artifacts from side lobes.

Thus, the focused narrow-beam sequence should be the preferred transmit strategy in patient populations 
with regular ventricular rhythms that are capable of sustaining a 7.5 s breathhold. A disadvantage of the compos-
ite focused approach is that its accuracy and precision is dependent on patient compliance with the breathhold. 
For patients with irregular ventricular rhythms who are unable to sustain a long breathhold, coherent com-
pounding is the recommended approach. In simulation, compounding estimated strain with 12%  ±  2.4% more 
accuracy compared to wide-beam imaging (figure 5). Based on the Strain Filter analysis summarized in figure 7, 
compounding in transthoracic imaging was 23%  ±  6.6% more precise on average compared to wide-beam 
imaging within the ε range of [10%, 40%]. Another advantage of compounding is that it has a fifth of the data 
storage requirements of an ECG-gated focused narrow-beam acquisition.

Figure 6. Systolic radial strains estimated from a healthy human subject imaged using ECG-gated focused narrow-beam (a), 
compounding (b), and focused wide-beam (c) transmit strategies.

Figure 7. Mean E(SNRe|ε) across seven human subjects. End-systolic radial E(SNRe|ε) between transmit strategies was statistically 
compared via one-way ANOVA and Tukey multiple comparison procedure.

Phys. Med. Biol. 65 (2020) 03NT01 (11pp)
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The focused wide-beam sequence consistently returned the least accurate and least precise strain estimates 
when compared to the focused narrow-beam and compounding sequences. This may be explained by comparing 
the MER of the transmit approaches. The focused wide-beam sequence featured the lowest MER of the transmits: 
100 Hz, compared to 200 Hz for the focused narrow-beam and 300 Hz for the compounding. The mean of the 
median correlation coefficient within the masked region through systole and across subjects for the focused nar-
row-beam, compounding, and focused wide-beam sequences was 0.84, 0.90, and 0.74, respectively. This indicates 
that the focused wide-beam estimator had the highest levels of decorrelation, while compounding had the least.

The distance from the transducer to the focal spot (or axial focal length) for both the narrow-beam and wide-
beam transmit approaches was set to 60 mm in simulation and in imaging patients. The precision and accuracy 
of the strain estimation is dependent on beamwidth, which is a function of the position of the myocardium rela-
tive to the axial focal length (Righetti et al 2003, Luo and Konofagou 2009). This relationship was not taken into 
account in this study and should be the subject of future work.

Conclusion

Selection of the appropriate transmit strategy to implement is integral in optimizing cardiac strain estimation 
for the clinic. An ECG-gated focused narrow-beam sequence, steered coherently compounded diverging wave 
sequence, and focused wide-beam sequence were compared in simulation and in transthoracic imaging of 
healthy subjects to compare the precision and accuracy of each transmit strategy in estimating radial strain. It 
was shown in simulation that the focused narrow-beam sequence provides the most accurate axial, lateral, and 
radial strain estimates, with the focused wide-beam sequence providing the least accurate strains. In vivo using 
the Strain Filter, it was shown that the focused narrow-beam sequence measured radial strain with the highest 
precision, followed by the compounding and wide-beam transmit strategies, respectively.

Funding
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HL140646.

Appendix

Previous iterations of Myocardial Elastography have implemented the Lagrangian definition of strain (Lee et al 
2007). In polar coordinates, the 2D displacement gradient tensor ∇u is defined as:

∇u =



∂ur

∂R

1

R

∂ur

∂Θ
− uΘ

R
∂uΘ

∂R

1

R

∂uΘ

∂Θ
+

ur

R


 ,

 (A.1)

Figure 8. Mean E(SNRe|ε) in axial segment (i.e. anterior and posterior walls), lateral segment (left lateral and septal walls), and both 
segments of end-systolic radial strains estimated using the ECG-gated focused transmit sequence with narrow beams. Axial and 
lateral segments were compared via Student’s t-test.
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where uΘ and ur are displacements perpendicular and parallel to beam direction, respectively. The displacements 
were then converted to Cartesian coordinates prior to the strain calculation.

The 2D Lagrangian finite strain tensor E was defined as:

E =
1

2
(∇u + (∇u)T

+ (∇u)T∇u), (A.2)

where the diagonal components of E are the Cartesian lateral (Exx) and axial (Eyy) strains. The radial-

circumferential strain tensor Ê may be calculated by applying the rotation matrix R =

ï
cosΘ sinΘ
− sinΘ cosΘ

ò
 as 

follows:

Ê = RERT , (A.3)

where the diagonal component Êrr is the radial strain.
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