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Abstract— Mapping of mechanical properties, dependent 1 

on the frequency of motion, is relevant in diagnosis, 2 

monitoring treatment response, or intra-operative surgical 3 

resection planning. While shear wave speeds at different 4 

frequencies have been described elsewhere, the effect of 5 

frequency on the “on-axis” acoustic radiation force (ARF)-6 

induced displacement has not been previously investigated. 7 

Instead of generating single transducer-harmonic motion 8 

imaging (ST-HMI)-derived peak-to-peak displacement 9 

(P2PD) image at a particular frequency, a novel multi-10 

frequency excitation pulse is proposed to generate P2PD 11 

images at 100-1000 Hz simultaneously. The performance of 12 

the proposed excitation pulse is compared with the ARFI by 13 

imaging 16 different inclusions (Young’s moduli of 6, 9, 36, 14 

70 kPa and diameters of 1.6, 2.5, 6.5, and 10.4 mm) 15 

embedded in an 18 kPa background. Depending on inclusion 16 

size and stiffness, the maximum CNR and contrast were 17 

achieved at different frequencies and were always higher 18 

than ARFI. The frequency, at which maximum CNR and 19 

contrast were achieved, increased with stiffness for fixed 20 

inclusion’s size and decreased with size for fixed stiffness. 21 

In vivo feasibility is tested by imaging a 4T1 breast cancer 22 

mouse tumor on Day 6, 12, and 19 post-injection of tumor 23 

cells. Similar to phantoms, the CNR of ST-HMI images was 24 

higher than ARFI and increased with frequency for the tumor 25 

on Day 6. Besides, P2PD at 100-1000 Hz indicated that the 26 

tumor became stiffer with respect to the neighboring non-27 

cancerous tissue over time. These results indicate the 28 

importance of using a multi-frequency excitation pulse to 29 

simultaneously generate displacement at multiple 30 

frequencies to better delineate inclusions or tumors. 31 

Index Terms— Displacement Imaging; Harmonic motion 32 

imaging; ARFI; Ultrasound elastography; Breast Cancer; 33 

High-Frequency ARF.  34 

I. INTRODUCTION 35 

Ultrasound elastography [1], magnetic resonance elastography 36 

(MRE) [2], or optical coherence elastography (OCE) [3] derived 37 

mechanical properties have been used to diagnose diseases, 38 

monitor the efficacy of treatment, and plan surgery [1], [4], [5]. 39 

All these elastographic methods are different in terms of the use 40 

of the mechanical force to probe the tissue, tracking force-41 

induced deformation, and inferring mechanical properties from 42 

the estimated deformation. Due to these differences, the 43 

estimated mechanical properties and the perceived size of the 44 

lesions/inclusions vary between different elastographic methods 45 

[6], [7]. While these variations can be mitigated by assessing 46 

mechanical properties as a function of frequency [8], 47 

interrogated frequencies are also different among these methods. 48 

As an example, MRE uses the single frequency shear wave (i.e., 49 

narrowband harmonic shear waves) in the 20-60 Hz range [4] 50 

whereas generated shear waves in the ultrasound elastography 51 

can be harmonic or transient/impulsive (i.e., broadband 52 

frequency range of 50-2000 Hz) [9].  53 

In ultrasound shear wave elastography (SWE), narrowband 54 

harmonic shear waves have been generated by an external device 55 

[10]–[12] or focused ultrasound transducer (FUS) vibrating 56 

continuously at a particular frequency [13] or by repeating a 57 

pulsed ARF at a particular frequency [14] or modulating ARF 58 

excitation pulse duration [15], [16]. Rather than generating 59 

narrowband harmonic shear waves, impulsive ARF was also 60 

used to generate shear waves in the wide frequency range and 61 

shear wave at a particular frequency (i.e., phase velocity) was 62 

calculated in the frequency domain using phase gradients or 63 

Fourier transform methods [17]–[22]. While these methods were 64 

mainly used to study phase velocity dispersion due to 65 

viscoelasticity [17]–[22] and geometry of the ARF [23], the 66 

selection of frequencies is important to correctly estimate 67 

mechanical properties and detect inclusion. Higher frequencies 68 

are better suited to reconstruct the shape of the stiffer inclusions 69 

and detect smaller inclusions with isotropic mechanical 70 

properties [20] and estimate fiber orientation and shear wave 71 

speed in anisotropic materials [24]. However, shear waves with 72 

higher frequencies attenuate more and do not propagate further 73 

from the source [25].  74 

In contrast to the shear wave-based measurements, some 75 

ARF-based elastographic methods used displacements “on-axis” 76 

to the ARF to estimate mechanical properties of tissue [26]–[29]. 77 

Though “on-axis” ARF based methods provide qualitative 78 

mechanical properties compared to the quantitative values 79 

provided by the SWE, “on-axis” methods may provide better 80 

mechanical resolution [30], be less distorted by tissue 81 

heterogeneity, reflected waves, and anisotropy [31], and provide 82 

higher penetration depth [32] compared to the SWE. Some “on-83 

axis” ARF- based methods include acoustic radiation force 84 

impulse (ARFI) imaging [26], ARF creep imaging [33], 85 

viscoelastic response (VisR) ultrasound imaging  [29], [34],  86 

kinetic acoustic vitreoretial examination (KAVE) [35], Vibro-87 

acoustography (VA) [36] and harmonic motion imaging (HMI) 88 

[28]. The “on-axis” methods, other than HMI or VA, used single 89 

[26] or several impulsive ARF excitation pulses co-localized in 90 

space-separated in time [29], [33]–[35] to assess mechanical 91 

properties of tissues. In VA [36], [37], or HMI [28], ARF is used 92 

to continuously oscillate tissue at a particular frequency. Due to 93 

the known frequency, the VA or HMI-derived mechanical 94 

properties are robust against artifacts due to the reverberation, 95 

movement, and breathing. While the HMI has been used for 96 

detecting pancreatic tumors [38], monitoring treatment response 97 

of pancreatic tumors [39], monitoring high intensity focused 98 

ultrasound-induced ablation of tumors [40], [41], and livers [42], 99 

the current use of two different transducers with a mechanical 100 

positioner to generate a 2-D image renders the HMI system 101 

highly complex to use for diagnostic imaging. 102 

To facilitate HMI data acquisitions while preserving the 103 
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advantages of the amplitude modulated (AM) ARF-induced 1 

harmonic excitation, Hossain et al. proposed a single transducer 2 

–HMI (ST-HMI) to generate and map narrowband harmonic 3 

motion using an imaging transducer [43], [44]. In ST-HMI, the 4 

AM-ARF is generated by modulating the excitation pulse 5 

duration and the AM-ARF-induced motion is tracked by 6 

transmitting the tracking pulses in between the discrete 7 

excitation pulses. Note, changes in the excitation pulse duration 8 

change the integrated intensity of the pulse which in turn 9 

generates different magnitude ARF [26]. While the shear wave 10 

or phase velocity as a function of frequency was well 11 

investigated in the past, the impact of frequency on the “on-axis” 12 

displacement was not studied extensively. By varying ST-HMI 13 

oscillation frequency from 60 – 420 Hz, Hossain et al. showed 14 

that the oscillation frequency could be exploited to improve the 15 

contrast-to-noise ratio (CNR) of 15 and 60 kPa inclusions [43]. 16 

However, the effect of oscillation frequency in detecting 17 

different size inclusion was not studied previously. The main 18 

limitation of [43] was the separate acquisition of each frequency 19 

data from 60 to 420 Hz. This may be unrealistic in a clinical 20 

imaging scenario due to the long imaging time and difficulty in 21 

registering different frequency images if there are patients' or 22 

sonographers' hand movements during the separate collection of 23 

several frequencies. Instead of collecting each frequency 24 

separately, the more realistic option is to collect several 25 

frequencies simultaneously. 26 

Towards the goal of generating ST-HMI-derived motion at 27 

several frequencies simultaneously, this study investigates the 28 

use of a new multi-frequency excitation pulse which is 29 

composed of a sum of sinusoids with desired frequencies. 30 

Similar to [43], the continuous multi-frequency excitation pulse 31 

is sampled and the tracking pulses are transmitted in between the 32 

discrete excitation pulses. The estimated displacements are 33 

filtered out to generate peak-to-peak displacements (P2PD) at 34 

corresponding frequencies of the multi-frequency excitation 35 

pulse.  36 

The objectives of this study are as follows. First, the feasibility 37 

of generating P2PD images at 100-1000 Hz frequencies is 38 

demonstrated using an excitation pulse composed of a sum of 39 

sinusoids with the corresponding frequencies and higher weights 40 

to the larger frequencies. To the best of our knowledge, no 41 

previous studies investigated “on-axis” displacement at these 42 

high frequencies. Second, the impact of inclusion size and 43 

stiffness on the contrast and CNR derived at 100-1000 Hz 44 

frequencies is investigated by imaging different inclusion sizes 45 

(N = 4) and stiffnesses (N=4). Third, the advantages of 46 

exploiting oscillation frequencies over ARFI-derived peak 47 

displacement (PD) are demonstrated. Note that, ARFI uses 48 

impulsive ARF to generate displacements with a wide frequency 49 

range. Fourth, the in vivo feasibility of generating P2PD images 50 

at 100-1000 Hz frequencies is demonstrated by imaging tumors 51 

in a 4T1 breast cancer mouse model.  52 

II. MATERIALS AND METHODS 53 

A. Excitation Pulse Composed of Sum of Sinusoids   54 

The proposed multi-frequency excitation pulse was composed 55 

of a sum of sinusoids with the lowest frequency of fL and was 56 

generated as follows: 57 

𝑒1 (𝑡) = ∑ 𝑗2 × 𝑐𝑜𝑠(2𝜋𝑗𝑓𝐿𝑡 + 𝜃𝑗) 

𝑁𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 

𝑗=1

 

𝑤ℎ𝑒𝑟𝑒,  𝜃𝑗 =  {
𝜋,   𝑖𝑓 𝑗 𝑜𝑑𝑑
0,   𝑖𝑓 𝑗 𝑒𝑣𝑒𝑛

 

(1) 

where Nsinusoid defines the total number of sinusoids with a 58 

frequency of an integer multiple of the lowest frequency of fL.  59 

Therefore, the maximum frequency in e1(t) is Nsinusoid × fL. The 60 

duration of the continuous excitation pulse is the product of the 61 

total cycle number (Ncycle) and fundamental period of fL (i.e., 62 

1/fL). For example, if a continuous excitation pulse contains 6 63 

cycles of fL = 100 Hz (i.e, fundamental period = 1000/100 ms), 64 

the duration of continuous excitation pulse will be 6*1000/100 65 

ms = 60 ms. The multiplication term, 𝑗2 , in (1) is added to 66 

account for the higher loss in the higher frequencies. The phase 67 

(θj) of sinusoids alternates between 0 and π to maximize the e1(t) 68 

dynamic range by constructively (5 ms) or destructively (4.5 and 69 

5.7 ms) summing sinusoids at different time points, which will 70 

produce motion at a wider dynamic range because pulse 71 

intensity (or ARF magnitude) is directly proportional to the 72 

pulse duration. As e1(t) is generated by adding sinusoids, e1(t) 73 

contains both positive and negative values. However, the 74 

excitation pulse duration can not be negative. Therefore, a dc 75 

offset, Aoffset, is added to e1(t) as follows: 76 

𝑒2 (𝑡) = 𝐴𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑒1(𝑡) 

𝑤ℎ𝑒𝑟𝑒,  𝐴𝑜𝑓𝑓𝑠𝑒𝑡 =  −𝐴𝑓𝑎𝑐𝑡𝑜𝑟  ×  min (𝑒1(𝑡)) 
(2) 

where, min(e1(t)) means minimum of e1(t). Afactor in (2) defines 77 

the minimum continuous excitation pulse duration. Therefore, 78 

Afactor has to be greater than 1.0 to have only positive values in 79 

e2(t). Note, Afactor sets to 1.25 for all experiments (see Table I). 80 

While the Aoffset is determined from the pulse duration, it does 81 

not need to depend on the e1(t). Any dc values can be added to 82 

have only positive values in the continuous pulse. Finally, e2(t) 83 

is normalized as follows to have a maximum excitation pulse 84 

duration of  𝑡𝐴𝑅𝐹
𝑚𝑎𝑥. 85 

𝑒(𝑡) =
𝑡𝐴𝑅𝐹

𝑚𝑎𝑥  × 𝑒2(𝑡)

𝑚𝑎𝑥(𝑒2 (𝑡))
 (3) 

where, max(e2(t)) means maximum of e2(t). However, e(t) in 86 

(3) is a continuous excitation pulse (see Fig. 2a). After setting 87 

Afactor = 1.25 and 𝑡𝐴𝑅𝐹
𝑚𝑎𝑥 = 100 µs, minimum continuous excitation 88 

pulse became 10 µs (see Fig. 2a). To accommodate both discrete 89 

excitation and tracking pulses, e(t) is sampled to generate Nep 90 

discrete excitation pulses as follows: 91 

𝐸[𝑛] = 𝑒(𝑡) × ∑ 𝛿(𝑡 − 𝑡𝑛)

𝑁𝑒𝑝

𝑛=1

   (4) 

where δ is the Delta-Dirac function and tn defines the nth discrete 92 

excitation pulse’s location in the time-axis. Tracking pulses are 93 

interleaved with Nep discrete excitation pulses (see Fig. 2b). The 94 

induced displacement was estimated relative to the reference 95 

tracking pulse which was transmitted at the start of excitation 96 

and tracking pulse sequence. 97 

B. In Silico Model 98 

The in silico model consists of Field II [45], [46] and LS-99 

DYNA3D  (Livermore Software Technology Corp. Livermore, 100 
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CA), a finite element method (FEM) solver. The model was 1 

adapted from [47]–[49] to simulate multi-frequency ST-HMI 2 

and ARFI imaging of elastic solid with parameters in Table I. 3 

The axial, lateral, and elevational range of the FEM mesh was 4 

5 to 42 mm, −8 to 8 mm, and −6 to 6 mm, respectively with an 5 

isotropic element size of  0.2 x 0.2 x 0.2 mm3. A 2 mm diameter 6 

spherical inclusion was embedded in the background with the 7 

center (elevational, lateral, axial) of the inclusion at (0, 0, 30) 8 

mm. The Young’s moduli of the background and inclusion were 9 

set to 18 and 22.5 kPa, respectively with the Poisson’s ratio of  10 

0.499.  11 

To simulate ultrasonic tracking of displacements, scatterers in 12 

Field II were moved according to the FEM displacement 13 

estimates with the parameters in Table I.  Eleven independent 14 

unique scatter realizations with 15 scatterers per resolution cell 15 

were implemented. White Gaussian noise was added Field II 16 

generated RF data using the awgn function in MATLAB 17 

(Mathworks Inc., Natick, MA, USA) to simulate system echo 18 

SNR of 25 dB. Motion tracking was performed by one-19 

dimensional axial normalized cross-correlation (NCC) using 20 

the parameters listed in Table I [50]. The focal depth of the 21 

excitation and tracking pulse was at 30 mm and a 2-D image 22 

was generated by moving the lateral focus location from -4 to 4 23 

mm in steps of 0.4 mm. 24 

C. Phantom Experiments  25 

The feasibility of generating displacements at multi-26 

frequencies simultaneously was tested by imaging a 27 

commercially available elastic phantom (model 049A, 28 

Computerized Imaging Reference Systems (CIRS) Inc, 29 

Norfolk, VA, USA). The imaging was performed using a 30 

Verasonics research system (Vantage 256, Verasonics Inc., 31 

Kirkland, WA, USA) equipped with an L7-4 transducer (Philips 32 

Healthcare, Andover, MA, USA). Using a clamp, the transducer 33 

was held in a steady position. Four stepped-cylindrical 34 

inclusions with nominal Young’s moduli of 6, 9, 36, and 70 kPa 35 

were embedded in the background with nominal Young’s 36 

modulus of 18 kPa. For each stiffness, imaging was performed 37 

at cross-sections with 1.6, 2.5, 6.5, and 10.4 mm diameters. The 38 

manufacturer provided standard deviation in elasticity and 39 

diameters measurements was approximately 5%.  The center of 40 

the inclusion was approximately 30 mm from the phantom’s 41 

surface. However, water was added between the transducer’s 42 

and phantom’s surface which resulted in the center of inclusion 43 

at 34 mm from the transducer surface. Throughout the remainder 44 

of the manuscript, each inclusion will be represented by its mean 45 

nominal Young’s modulus and diameter. 46 

The performance of ST-HMI with multi-frequency excitation 47 

pulse was compared to ARFI imaging [26]. The ARFI and ST-48 

HMI imaging were performed consecutively using the methods 49 

described in [26], [43], [51] with parameters indicated in Table 50 

I. Briefly, both ARFI and ST-HMI data were collected using 51 

focused excitation and tracking beams generated with sub-52 

aperture and translated electronically across the lateral field to 53 

generate a 2-D image. Thirty-two or Thirty-eight evenly spaced 54 

RF lines with 0.6 mm or 0.3 mm spacing between RF lines were 55 

acquired to image inclusions with diameters of (10.4 and 6.5 56 

mm) or (2.5 and 1.6 mm), respectively. Wiper blading scanning 57 

mode [52] was used to prevent interference in the tissue 58 

mechanical response between consecutive RF lines and reduce 59 

transducer face heating. One frame of the B-mode ultrasound 60 

image with 128 RF lines spanning approximately 38 mm in 61 

lateral direction was collected preceding ARFI and ST-HMI 62 

imaging. By moving the transducer in the elevational direction, 63 

six repeated acquisitions of ARFI and ST-HMI were acquired at 64 

each inclusion stiffness and size. The acquisition time of (ST-65 

HMI, ARFI) data with 32 RF lines took approximately (6, 4) s 66 

with (0.1, 0.08) s interval between RF lines. 67 

D. Imaging of A breast cancer mouse model, In Vivo 68 

The in vivo performance of the proposed excitation pulse 69 

sequence was investigated by imaging tumors in an orthotropic, 70 

4T1 breast cancer mouse model (N=1). The Columbia 71 

University Irving Medical Center (CUIMC) Institutional Animal 72 

Table I 

EXCITATION AND TRACKING PARAMETERS OF ACOUSTIC RADIATION FORCE 

IMPULSE (ARFI) USED IN IMAGING PHANTOMS AND SINGLE TRANSDUCER-

HARMONIC MOTION IMAGING (ST-HMI) USED IN IMAGING PHANTOMS AND 

BREAST CANCER MOUSE TUMOR WITH NORMALIZED CROSS CORRELATION 

PARAMETERS FOR DISPLACEMENT ESTIMATION.  

Parameters 
Phantom 

(Simulation)  

Mouse 

Beam sequence parameters of ST-HMI / ARFI 

Transducer L7-4 L11-5 

Bandwidth 58% 77% 

Sampling frequency 20.84 MHz 31.3 MHz 

Acoustic lens axial focus  25 mm 18 mm 

Excitation pulse center frequency 4.0 MHz 5.0 MHz 

Excitation pulse  F-number 2.25 2.25 

Tracking pulse  center frequency 6.1 MHz 8.0 MHz 

Tracking pulse transmit F-number 1.75 1.75 

Tracking pulse receive F-number* 1.0 1.0 

Excitation and tracking pulse axial 

focus  
34 (30) mm  22 mm 

Spacing between RF-lines 
0.59 / 0.3 

(0.2) mm 

0.6 / 0.3 

mm 

RF-lines number/image 32 / 38 (16) 30 

Lateral field of view size 
20 / 11 (8) 

mm 
18 / 9 mm 

Tracking pulse PRF 10 KHz 12 KHz 

ST-HMI specific parameters 

Lowest oscillation frequency, fL 100 Hz 100 Hz 

Sinusoids number, Nsinusoid 10 10 

Afactor 1.25 1.25 

Maximum excitation pulse 

duration, 𝑡𝐴𝑅𝐹
𝑚𝑎𝑥 

100 µs 40 µs 

Discrete excitation pulse duration 

range 
35 - 100 µs 45 - 60 µs 

Discrete excitation pulse per fL 6 7 

Cycle number, Ncycle 6 (4) 4  

ARFI Specific parameters  

Tracking pulse number  110 (30) 130 

Excitation pulse duration 113 µs 75 µs 

Normalized cross correlation parameter 

Interpolation factor 4 4 

Kernel length  592 µm 492 µm 

Search region 80 µm 80 µm 

* Aperture growth and dynamic Rx focusing enabled 
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Care and Use Committee (IACUC) reviewed and approved the 1 

protocol for the cancer induction and imaging of the mouse’s 2 

tumors. Tumors were generated by injecting 1 x 105 4T1 breast 3 

cancer cells in the 4th inguinal mammary fat pad of the eight to 4 

ten-week-old female BALB/c mice (Jackson Laboratory)[53], 5 

[54]. 6 

The same Vantage Verasonics research system equipped with 7 

an L11-5 (Verasonics) linear array was used to perform ST-HMI 8 

and ARFI with the setup described in [43]. Briefly, the 9 

anesthetized mice (1- 2% isoflurane in oxygen) were imaged by 10 

placing the mice in a supine position on a heating pad with their 11 

abdominal hair removed, and the transducer was held in a steady 12 

position using a clamp during imaging. The mouse was imaged 13 

on Day 6, 12, and 19 post-injection of cancer cells using the 14 

parameters indicated in Table I. Thirty evenly spaced RF-lines 15 

with 0.3 or 0.6 mm separation in between RF-lines were 16 

acquired to generate 2-D images of ST-HMI-derived P2PDs. 17 

Preceding each ST-HMI sequence, one spatially-matched B-18 

mode image was acquired with 128 lateral lines spanning 19 

approximately 38 mm, for anatomical reference.  20 

E. ST-HMI and ARFI Data Processing 21 

The channel data were stored onto the Verasonics workstation 22 

after running ARFI and ST-HMI imaging sequence and were 23 

transferred to the computational workstation for offline 24 

processing using MATLAB (MathWorks Inc., Natick, MA, 25 

USA). A custom delay-and-sum beamforming [55] was applied 26 

to the channel data to construct beamformed radiofrequency 27 

(RF) data. 1-D NCC [50] (Table I) was applied to estimate 28 

displacement relative to the reference tracking pulse which 29 

yielded in a 3-D dataset (axial x lateral x time) describing axial 30 

displacements over time. 31 

 From the ARFI  3-D dataset, a parametric 2-D image of PD 32 

was generated after applying a linear filter [56] to the 33 

displacement versus time profile at each pixel [43]. Finally, 34 

ARFI-derived PD images were normalized to account for the 35 

variation in the ARF magnitude over the axial range [57]. A 2-36 

D spline interpolation (interp2 function) was applied to the 37 

normalized PD image to convert the anisotropic pixel dimension 38 

(0.04 x 0.6 mm or 0.04 x 0.3 mm) to an isotropic pixel dimension 39 

of 0.1 mm.  40 

2-D parametric image of ST-HMI-derived P2PD at each 41 

frequency was generated using the method described in [43] as 42 

follows. First, a 2-D spline interpolation (interp2 function) was 43 

applied to the 2-D displacement data at each time point to 44 

convert the anisotropic pixel size to an isotropic pixel size of 0.1 45 

mm. Second, the differential displacements at each pixel were 46 

computed by subtracting displacements between successive time 47 

points to remove the slowly varying motion. Third, the 48 

differential displacements at each time point were averaged 49 

using a 2-D sliding window with a 0.8 x 0.8 mm kernel. Note, 50 

the differential displacements calculation can act as a high pass 51 

filter and has the potential to enhance noise. Therefore, the 52 

spatial averaging of the differential displacements was 53 

performed to reduce noise before filtering out displacement at 54 

each frequency. Fourth, the differential displacement profiles 55 

were filtered out using a fourth-order infinite impulse response 56 

(IIR) bandpass filter (designfilt and filter function) to estimate 57 

displacements at each frequency. It is noteworthy to mention that 58 

filtering of differential displacement profiles was performed 59 

separately at each frequency. At each pixel, the cutoff values of 60 

the bandpass filter were selected adaptively [43]. Fifth, the 61 

filtered displacement profile at each pixel and each frequency 62 

were integrated (cumsum function in MATLAB) and normalized 63 

to a zero mean. Sixth, using the integrated-filtered displacement 64 

profile, the average P2PD over cycle was calculated at each 65 

pixel, and then, rendered into a 2-D parametric image. Note, The 66 

number of cycles varies between frequencies as the duration of 67 

the continuous excitation pulse was fixed. As an example, if the 68 

duration of the continuous excitation pulse is 60 ms with fL = 100 69 

Hz, then 100 and 1000 Hz had 6 cycles and 60 cycles of 70 

oscillation, respectively (Table I). Seventh, P2PD images at each 71 

frequency were normalized separately to account for the 72 

variation in the ARF magnitude over the axial range [43]. The 73 

normalizing profiles for both ARFI and ST-HMI were generated 74 

from the 1.5 mm leftmost and rightmost lateral field of view 75 

(FOV) [43]. Fig. 1 depicts a flowchart representing the 76 

processing steps implemented to generate normalized P2PD 77 

images at each frequency. 78 

 It took 5 min to process data from performing the delay-and-79 

sum beamforming to generating the final normalized P2PD 80 

image at each frequency using a 2.2 GHz Intel Xeon Platinum 81 

processor with a 20 cores processor. The computational time can 82 

be reduced by implementing ST-HMI data processing pipelines 83 

(Fig. 1) in CUDA GPU. 84 

F. Image Quality Metrics 85 

The performance of ARFI-derived PD and ST-HMI-derived 86 

P2PD images were compared quantitatively in terms of contrast 87 

and CNR with the region of interests (ROIs) in inclusion (INC) 88 

and background (BKD) as the concentric circle and ring, 89 

respectively (see Fig. 3a) [43]. The inclusion’s ROI was defined 90 

as the concentric circle with 80% of the corresponding 91 

inclusion’s radius. The background ROI was defined as a ring 92 

surrounding the inclusion, with an inner radius of 120% of the 93 

corresponding inclusion’ radius. Contrast and CNR were 94 

 

Fig 1: Data processing steps employed to generate ST-HMI-derived peak-2-peak displacement (P2PD) image at each frequency. Steps 
marked by *, #, and % mean steps are repeated for each pixel, time point, and frequency, repectivey. Note, some steps are repated for 
more than one cases. DAS = Dealy-and-sum; NCC = Normalized cross-correlation; DD = Differential displacments; 

.  
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computed as |𝜇𝐼𝑁𝐶 − 𝜇𝐵𝐾𝐷| / 𝜇𝐵𝐾𝐷 and |𝜇𝐼𝑁𝐶 −  𝜇𝐵𝐾𝐷| /1 

 √(𝜎𝐼𝑁𝐶
2 + 𝜎𝐵𝐾𝐷

2 ), respectively, where, µ and σ are the median 2 

and standard deviation of normalized displacements in the ROI. 3 

To perform linear regression between P2PD ratios versus 4 

Young’s moduli ratios, a rectangular ROI (see Fig. 3a) [43] was 5 

used to avoid the boundary effects. The inclusion’s boundary 6 

was derived from the B-mode image (see Figs. 3a and 6). 7 

G. Statistical Analysis 8 

All statistical analyses were performed in MATLAB. Thirty-9 

two (diameter, N = 4, stiffness, N = 4) separate Kruskal-Wallis 10 

tests (kruskalwallis function), were carried out to compare the 11 

contrast and CNR of ARFI-derived PD and ST-HMI derived 12 

P2PD images at  100-1000 Hz. If any group was statistically 13 

significant, a two-sample Wilcoxon signed rank-sum test 14 

(signrank function) was used to find which combination was 15 

statistically significant. The R2, slope, and root mean square 16 

error (RMSE) of the linear regression between the PD or P2PD 17 

ratio versus Young’s moduli ratio was calculated at each 18 

frequency and inclusion size. The RMSE was calculated 19 

between displacement ratio (DR) and Young’s Moduli ratio. For 20 

all the analyses, the statistical significance was based on p < 21 

0.05. 22 

III. RESULTS 23 

Fig. 2(a) shows multi-frequency continuous excitation pulse, 24 

e(t) (equation (3)) with Nsinusoid  = 10, Ncycle = 1,  and fL = 100 Hz. 25 

From here onward, 100:100:1000 Hz will represent frequencies 26 

from 100  to 1000 Hz in steps of 100 Hz. Therefore, the 27 

continuous excitation pulse mainly contains frequencies from 28 

100 to 1000 Hz in steps of 100 Hz. While 1 cycle of excitation 29 

pulse is shown in Fig. 2, data were collected using  6 (phantom) 30 

or 4 (mouse) cycles of fL = 100 Hz (Table I) i.e total duration of 31 

excitation pulse was 60 ms (phantom) or 40 ms (mouse). The Y-32 

axis in Fig. 2a is shown in terms of the pulse duration to 33 

underline the change in pulse duration over time because the ST-34 

HMI modulates the excitation pulse duration to generate 35 

amplitude modulated-ARF (AM-ARF). The continuous 36 

excitation pulse was sampled to accommodate both tracking 37 

(black) and discrete excitation (red) pulses. Note, there were 38 

only 6 discrete excitation pulses (Nep = 6) per one period of 100 39 

 
Fig 2: (a) Tracking pulses (black arrow) interleaved with discrete 

excitation pulses (red arrow) after sampling a continuous 
excitation pulse (blue). Displacement was estimated with respect 
to the reference tracking pulse (green arrow). Y-axis contains a 
break to accommodate the difference in excitation and tracking 
pulse duration. (b) Fourier transform (FT) magnitude spectra of 
continuous (blue) and discrete (red) excitation pulse. FT was 
calcuated using 6 cycles of respective excitation pulse i.e after 
repeating continuous and discrete pulse in panel (a) 6 times with 
mean normalized to zero . 

 

 

 

 

Fig 3: (a) B-mode ultrasound image of 6.5 mm, 36 kPa inclusion. Inclusion boundary (black dashed circle) was derived from the B-mode 
image and used to draw region of interests (circle or ring or rectange) in inclusion and background. ST-HMI derived (b) displacement 
profiles (c) differential displacement between successive time points (d) magnitude spectrum of Fourier transform (FT) of the differential 
displacement profiles (e) filtered displacement profiles at 300 Hz in 36 kPa inclusion (blue) and 18 kPa background (red).  Green dahsed 
lines in panel (d) represent adaptively selected cutoff values for the bandpass filter.  

; 

.  
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Hz (i.e, 10 ms). The duration of the discrete excitation pulses 1 

was variable (35-100 µs) but the tracking pulse duration was 2 

fixed to 0.33 µs (i.e., 2 cycles of 6 MHz). The number of the 3 

tracking pulses in between the excitation pulses depends on the 4 

pulse repetition frequency (PRF) of the tracking pulse (Table I). 5 

Fig. 2(b) shows Fourier transform (FT) magnitude spectra of 6 

continuous (blue) and discrete (red) excitation pulse. Both 7 

spectra contain 10 peaks at 100 to 1000 Hz in steps of 100 Hz 8 

with maximum magnitude at 600 and 1000 Hz for discrete and 9 

continuous excitation pulse, respectively.  10 

Fig. 3 shows a representative B-mode ultrasound image of a 11 

6.5 mm, 36 kPa inclusion embedded in an 18 kPa background 12 

(panel (a)) and representative displacement profiles in inclusion 13 

and background with frequency spectrum (panels (b)-(e)). The 14 

inclusion’s boundary was derived from the B-mode and was 15 

used to draw ROI for contrast and CNR calculation (section 16 

II.E). Displacements (panel (b)) or differential displacements 17 

(panel (c)) were higher in 18 kPa versus 36 kPa material which 18 

is expected. Six peaks per period (10 ms) correspond to the six 19 

discrete excitation pulses (Fig. 2a). The amplitude of each peak 20 

was different due to the difference in the duration of the discrete 21 

excitation pulse. The Fourier transform of the differential 22 

displacements (panel (d)) contains peaks at 100:100:1000 Hz. 23 

These indicate that the multi-frequency excitation pulse with 24 

peaks at 100:100:1000 Hz generated displacements with peaks 25 

at 100:100:1000 Hz. Panel (e) shows displacements at 300 Hz 26 

after applying Bandpass filtering with [283 315] Hz cutoff 27 

values to the differential displacement profiles. The P2PD was 28 

0.11 and 0.27 µm in 36 and 18 kPa materials at 300 Hz. Similar 29 

to panel (e), P2PDs were calculated for each pixel and each 30 

frequency to generate P2PD images at corresponding 31 

frequencies. 32 

Fig. 4 shows B-mode, ARFI normalized PD, and ST-HMI 33 

normalized P2PD images at 100-1000 Hz of a 22.5 kPa, 2 mm 34 

diameter simulated spherical inclusion embedded in an 18 kPa 35 

background. These images were generated by averaging 11 36 

independent speckle realizations. Despite the lower difference in 37 

Young’s moduli in inclusion versus background, both PD and 38 

P2PD at greater than 400 Hz detected the presence of inclusion. 39 

However, the perceived contrast and boundary delineation were 40 

better at 800-1000 Hz than the PD image. Throughout the 41 

manuscript, detecting an inclusion will refer to qualitative 42 

comparison when the inclusion pixel values are clearly different 43 

than the background pixel values. The qualitative results are 44 

confirmed by the CNR and contrast results which are shown in 45 

 
Fig 5: Simulated phantom: (a) Contrast and (b) CNR of ARFI and 

ST-HMI derived images at 100-1000 Hz of 2 mm, 22.5 kPa 
inclusion embedded in 18 kPa background. Data are plotted as 
median ± 0.5*interquartile range over 11 independent speckle 
realizations. The Kruskal–Wallis test suggested that contrast and 
CNR were statistically different across ARFI and ST-HMI. For 
clarity, the asterisk is only shown when Kruskal–Wallis test 
suggests a statistical difference and median contrast and CNR 
were statistically different (sign ranksum) from the highest median 
contrast and CNR (dotted blue rectangle). 

 

 

 

 

 

 

Fig 4: Simulated phantom: Bmode, normalized ARFI peak displacement, and ST-HMI derived normalized peak-to-peak displacement 
images at 100- 1000 Hz of a 22.5 kPa inclusion with 2 mm diameter embedded in 18 kPa background. Black contour represents the true 
inclusion boundary.  

.  



7     IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2022 

 

Fig 5. The maximum CNR and contrast were achieved at 1000 1 and 900 Hz which were significantly higher than other 2 

 

Fig 6: Bmode, ARFI normalized peak displacement, and ST-HMI normalized peak-to-peak displacement image at 100:100:1000 Hz of 
36 kPa inclusion with 10.4 mm (1st-2nd rows), 6.5 mm (3rd-4th rows), 2.5 mm (5th – 6th rows), and 1.6 mm (7th – 8th rows) diameters.Black 
contour and arrowhead represent the inclusion boundary and the presence of high echogeneous region in the bournady, respectively. 
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frequencies and PD (p<0.05, kruskalwallis and ranksum). 1 

Fig. 6 shows representative ARFI PD and ST-HMI P2PD 2 

images at 100:100:1000 Hz of 36 kPa inclusion with  10.4, 6.5, 3 

2.5, and 1.6 mm diameters. Note, all images were normalized to 4 

account for the variation in the ARF magnitude over axial 5 

distance.  Four observations are notable. First, the perceived 6 

contrast of inclusion varies with the inclusion size for the fixed 7 

36 kPa stiffness irrespective of ARFI or ST-HMI.  Second, 8 

qualitatively ARFI detected 10.4 and 6.5 mm inclusions but was 9 

unable to detect 2.5 or 1.6 mm inclusion. Third, ST-HMI 10 

detected all inclusions, and the perceived contrast varied with 11 

the frequency. This result indicates that the frequency in ST-12 

HMI can be exploited to detect different size inclusions with the 13 

same stiffness. Fourth, the number of frequencies detected 14 

inclusions decreases with size. As an example, all frequencies 15 

detected 10.4 mm inclusion whereas only 900 and 1000 Hz 16 

detected 1.6 mm inclusion. 17 

Fig. 7 quantitatively compares ARFI versus ST-HMI derived 18 

contrast of 6 kPa (panel (a)), 9 kPa (panel (b)), 36 kPa (panel 19 

(c)), and 70 kPa (panel (d)) inclusions with 10.4, 6.5, 2.5, and 20 

1.6 mm diameters. Five observations are notable. First, the 21 

contrast was statistically different (p<0.05, kruskalwallis test) 22 

between ARFI and ST-HMI at 100:100:1000 Hz irrespective of 23 

inclusion sizes or stiffnesses. Second, the frequency of ST-HMI 24 

can be exploited to achieve higher contrast (p<0.05, ranksum 25 

test) than ARFI. Third, the maximum contrast depends on the 26 

inclusion size and stiffness. Fourth, for fixed stiffness, maximum 27 

contrast decreases with inclusion size. Fifth, the frequency at 28 

which the maximum contrast was achieved also depended on the 29 

inclusion stiffness and size. The maximum contrast was 30 

achieved at (200, 200, 500, 500), (300, 200, 500, 700), (600, 31 

700,1000, 1000), and (700, 1000,100,1000) Hz frequency for 6, 32 

9, 36, and 70 kPa inclusions with (10.4, 6.5, 2.5,1.6) mm 33 

diameters, respectively. 34 

Fig. 8 quantitatively compares ARFI versus ST-HMI derived 35 

CNR of 6 kPa (panel (a)), 9 kPa (panel (b)), 36 kPa (panel (c)), 36 

and 70 kPa (panel (d)) inclusions with 10.4, 6.5, 2.5, and 1.6 mm 37 

diameters. Observations similar to the contrast in Fig. 7 can be 38 

made i.e., the frequency of ST-HMI can be exploited to achieve 39 

higher CNR than ARFI and maximum CNR depends on 40 

frequency and inclusion’s size and stiffness. However, the 41 

frequencies at which the maximum CNR was achieved were 42 

different from those at the maximum contrast.  The maximum 43 

CNR was at achieved (300, 500, 900, 700), (300, 300, 600, 600), 44 

(300, 400, 1000, 1000), and (600, 900, 1000, 1000) Hz 45 

frequency for 6, 9, 36, and 70 kPa inclusions with (10.4, 6.5,  46 

2.5,1.6) mm diameters, respectively. Note, only median values 47 

versus median and standard deviation were used in contrast 48 

versus CNR calculation, respectively. Therefore, CNR accounts 49 

for the heterogeneity of background and inclusion. CNR greater 50 

than 1 is needed to reliably detect inclusion. 51 

Fig. 9 shows linear regression between ARFI PD ratio or ST-52 

HMI P2PD ratio of background over inclusion versus Young’s 53 

moduli ratio of inclusion over background with R2, slope, and 54 

 

Fig 7: Contrast of ARFI (red box) and ST-HMI derived images  at 100-1000 Hz of (a) 6, (b) 9, (c) 36, and  (b) 70 kPa inclusions with 10.4, 
6.5, 2.5, and 1.6 mm diameters embedded in an 18 kPa background. Note that, the Y-axis range is different between panels. ST-HMI 
derived images  at 100-500 and 600-1000 Hz are shown in different combination of red+blue and green + blue colors. Data are plotted as 
median ± 0.5*interquartile range over 6 repeated acquisitions. The Kruskal–Wallis test suggested that contrast were statistically different 
across ARFI and ST-HMI at 100-1000 Hz irrespective of inclusion size and stiffness. For clarity, the asterisk is only shown when Kruskal–
Wallis test suggests a statistical difference and median contrast were statistically different (sign ranksum) from the highest median contrast 
(dotted blue rectangle). 
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root mean square error (RMSE) for 10.4 mm diameter. The 1 

results are only shown for 200-1000 Hz in steps of 200 Hz for 2 

simplicity. The RMSE was calculated between the displacement 3 

ratio and Young’s moduli ratio. Table II lists R2, slope, and 4 

RMSE of all frequencies for all 4 diameters and after combining 5 

all diameters. Combining all diameters means the size of the 6 

inclusion was not taken into consideration. For the larger 7 

inclusion (10.4 and 6.5 mm), 400 Hz had the lowest RMSE 8 

whereas 1000 Hz had the lowest RMSE for smaller inclusion 9 

(2.5 and 1.7 mm) along with combined diameter. Except for 100-10 

300 Hz in combined diameters, the R2 value was greater than 0.9 11 

in all cases. 12 

Fig. 10 shows in vivo B-mode, ARFI normalized PD, and ST-13 

HMI normalized P2PD images at 100-1000 Hz of a mouse tumor 14 

on Day 6, 12, and 19. Table II lists CNR, contrast, and the 15 

displacement ratio (DR) of ARFI and ST-HMI images at three-16 

time points. The DR was calculated as the ratio of ARFI PD or 17 

ST-HMI P2PD of neighboring non-cancerous tissue over the 18 

tumor. Therefore, higher DR means higher stiffness of tumor 19 

assuming that non-cancerous tissue stiffness remained stable 20 

over time. Six observations are notable. First, both ARFI and 21 

ST-HMI detected the presence of the tumor. Second, the tumor 22 

grew in size over time with the ingression of cancerous cells and 23 

the tumor area was 11.4, 19.2, and 56.0 mm2 on Day 6, 12, and 24 

19 respectively. Third, the tumor also became stiffer over time 25 

which was indicated by an increase in DR over time irrespective 26 

of methods or frequencies. Fourth, the CNR of ST-HMI-derived 27 

images was higher than ARFI irrespective size or stiffness of the 28 

tumor. Fifth, the CNR of ST-HMI-derived images increased 29 

with frequency for the tumor on Day 6 whereas the CNR 30 

remained stable with frequency for the tumor on Day 12 and 19. 31 

Sixth, the contrast of ARFI and ST-HMI images was similar. 32 

IV.  DISCUSSION 33 

Conventional HMI uses AM-ARF to interrogate mechanical 34 

properties by oscillating tissue at a particular frequency. To do 35 

so, HMI simultaneously generates and tracks narrowband 36 

 
Fig 9: ST-HMI-derived Peak-to-peak displaceement (P2PD) and 

ARFI-derived peak displacment (PD)  ratio of background (BKD) to 
inclusion (INC) versus Young’s moduli ratio of inclusion to background 
for 10.4 mm diameter inclusion with R2, slope (m), and root mean 
square error (RMSE) value on the legend. The numerator and 
denominator are interchanged in the abscissa and ordinate’s ratio as 
Young’s modulus and P2PD/PD are inversely related. Data are plotted 
as median ± 0.5* interquartile range over 6 repeated acquisitions. LoE 
= Line of Equivalency.  

 

 

 

 

Fig 8: CNR of ARFI (red box) and ST-HMI derived images  at 100-1000 Hz of (a) 6, (b) 9, (c) 36, and  (b) 70 kPa inclusions with 10.4, 
6.5, 2.5, and 1.6 mm diameters embedded in an 18 kPa background.  Note that, the Y-axis range is different between panels. ST-HMI 
derived images  at 100-500 and 600-1000 Hz are shown in different combination of red+blue and green + blue colors. Data are plotted as 
median ± 0.5*interquartile range over 6 repeated acquisitions. The Kruskal–Wallis test suggested that CNR were statistically different 
across ARFI and ST-HMI at 100-1000 Hz irrespective of inclusion size and stiffness. For clarity, the asterisk is only shown when Kruskal–
Wallis test suggests a statistical difference and median contrast were statistically different (sign ranksum) from the highest median contrast 
(dotted blue rectangle). 
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harmonic oscillation with a frequency less than 100 Hz using 1 

focused ultrasound and imaging transducers, respectively [58]. 2 

To facilitate data acquisition, ST-HMI has been proposed 3 

recently and the feasibility of generating ST-HMI-induced 4 

oscillation in the range of 60-420 Hz was demonstrated by 5 

collecting each frequency data separately [43]. Though 6 

oscillation frequency can be exploited to better detect 7 

inclusions/lesions, acquisition of multiple frequencies separately 8 

may be unrealistic in clinical settings due to patients' or 9 

sonographer hand movements. To facilitate the generation of 10 

displacement maps at several frequencies simultaneously, this 11 

study presents a novel excitation pulse with frequencies from 12 

100-1000 Hz for ST-HMI.  13 

ST-HMI assesses mechanical properties “on-axis” to the ARF 14 

and is different from the “off-axis” shear wave-based methods 15 

like supersonic shear imaging [59], shear wave imaging (SWI) 16 

[60], shearwave dispersion ultrasound vibrometry [14], or 17 

harmonic SWI [8] in terms of estimating the mechanical 18 

properties of tissues. Though an excitation pulse composed of a 19 

sum of sinusoids was used in shear wave-based methods [16], 20 

there are several differences between the proposed work versus 21 

Zheng et al. [16]. First, Zheng et al. is a shear wave method. 22 

Therefore, the advantages of assessing mechanical properties 23 

“on-axis” to ARF as mentioned previously and also in [43] are 24 

still held. Second, Zheng et al. used two different transducers for 25 

generating multi-frequency excitation pulse and tracking 26 

induced motion “off-axis” to ARF whereas the proposed work 27 

uses a single transducer to perform both generation and tracking 28 

of motion. Third, Zheng et al. demonstrated the feasibility of 29 

generating multi-excitation motion in the homogeneous material 30 

only whereas this work has shown the feasibility in 16 different 31 

inclusions with varying stiffnesses and sizes and tumors in a 32 

mouse model, in vivo. 33 

 The proposed continuous excitation pulse was generated by 34 

summing sinusoids with the frequency of 100-1000 Hz and 35 

larger weights to the higher frequencies (j2 in (1)). The frequency 36 

range was chosen by considering hardware constraints and 37 

previous research on shear wave-based methods [20], [61]. If the 38 

frequency lower than 100 Hz was chosen, the excitation pulse 39 

duration and data collection time will be longer albeit with better 40 

performance due to finer sampling. On the other hand, some 41 

frequency components may not have sufficient energy to 42 

generate displacements above the noise level if the frequencies 43 

higher than 1000 Hz are chosen while keeping the lower limit to 44 

100 Hz. While the current frequency range of 100-1000 Hz was 45 

shown capable of generating displacement images over a wide 46 

range of stiffness (6-70 kPa) and size (1.6-10.4 mm), the 47 

performance of ST-HMI can be improved further by obtaining 48 

the data collection in two steps. In the first step, the data can be 49 

collected in a wider frequency range (200 – 2000 Hz) with a 50 

coarse sample of 200 Hz, then a narrow frequency range around 51 

the best performing frequency that can be used in the second 52 

step. This two-step data collection will lengthen the overall data 53 

collection duration. Therefore, there is a trade-off between 54 

improving lesion boundary delineation and data collection 55 

duration which will be dictated by the clinical applications. 56 

The energy of the 100-1000 Hz frequency component of the 57 

continuous excitation pulse increased monotonically with 58 

frequency due to larger weights to the higher frequencies (Fig. 59 

2b). However, the energy of frequency components of the 60 

discrete excitation pulse did not increase monotonically (Fig. 2b) 61 

due to sparse sampling (Fig. 2a). The energy was generally 62 

higher for larger frequencies except at 700 Hz. The displacement 63 

frequency spectrum (Fig. 3d) followed a similar relation of FT 64 

Table II 

R2, SLOPE, AND ROOT MEAN SQUARE ERROR (RMSE) OF LINEAR REGREESION BETWEEN ST-HMI / ARFI DISPLACEMENT RATIO (DR) VERSUS YOUNG’S 

MODULI (YM) RATIO  IN PHANTOM FOR 10.4, 6.5, 2.5, 1.4 MM INCLUSION DIAMETERS AND AFTER COMBING ALL DIAMETER INCLUSIONS.  DRST-HMI = 

P2PDBKD / P2PDINC AND YM RATIO = YMINC / YMBKD, INC = INCLUSION, BKD= BACKGROUND. ST-HMI AND ARFI-DERIVED CNR, CONTRAST, AND DR OF 

MOUSE TUMOR.  THE LOWEST RMSE AND HIGHEST CNR AND CONTRAST ARE SHOWN IN BOLD FOR BETTER DISTINCTION. 

Diameter Metric ARFI 100 200 300 400 500 600 700 800 900 1000 

10.4 mm 
R2 1.0 0.97 1.0 1.0 1.0 1.0 0.99 0.98 0.99 0.99 0.97 

Slope 0.58 0.42 0.69 0.76 0.91 0.73 0.79 0.93 0.73 0.61 0.66 

RMSE 0.66 1.01 0.52 0.36 0.17 0.41 0.32 0.30 0.41 0.57 0.51 
             

6.5 mm 
R2 1.0 0.94 1.0 1.0 1.0 1.0 1.0 0.98 0.99 0.98 0.96 

Slope 0.54 0.25 0.46 0.75 0.84 0.61 0.68 1.02 0.74 0.71 1.14 

RMSE 0.74 1.28 0.97 0.41 0.25 0.62 0.49 0.31 0.38 0.44 0.61 
             

2.5 mm 
R2 1.0 0.96 0.91 0.99 0.99 0.99 0.99 0.98 1.0 1.0 0.99 

Slope 0.22 0.08 0.10 0.21 0.26 0.27 0.32 0.43 0.34 0.38 0.55 

RMSE 1.36 1.53 1.57 1.38 1.32 1.30 1.22 1.03 1.13 1.02 0.71 
             

1.6 mm 
R2 0.99 0.95 0.91 0.98 0.97 0.98 0.97 0.97 0.98 0.99 1.0 

Slope 0.24 0.10 0.12 0.22 0.27 0.27 0.30 0.35 0.32 0.39 0.56 

RMSE 1.33 1.51 1.54 1.40 1.33 1.34 1.30 1.18 1.18 1.02 0.70 
             

Combined 
R2 0.94 0.87 0.81 0.89 0.94 0.98 0.99 1.0 0.99 1.0 0.99 

Slope 0.26 0.15 0.15 0.23 0.27 0.29 0.32 0.43 0.36 0.41 0.60 

RMSE 1.25 1.44 1.50 1.34 1.25 1.22 1.17 0.95 1.07 0.93 0.60 
             

Mouse 
Day 6 

CNR 5.48 8.3 6.68 7.62 7.07 7.86 7.73 7.71 8.47 9.39 9.35 

Contrast 0.82 0.72 0.78 0.80 0.84 0.81 0.81 0.80 0.79 0.78 0.74 

DR 5.53 3.60 4.45 5.02 6.13 5.14 5.18 5.02 4.69 4.52 3.81 
             

Mouse 
Day 12 

CNR 4.95 6.97 4.19 6.33 5.16 6.95 6.90 6.81 6.59 6.62 5.49 

Contrast 0.78 0.80 0.80 0.84 0.84 0.79 0.80 0.79 0.79 0.79 0.81 

DR 4.49 4.96 5.07 6.12 6.34 4.75 5.0 4.84 4.75 4.80 5.31 
             

Mouse 
Day 19 

CNR 1.79 3.84 3.25 3.83 3.63 4.28 4.30 4.18 4.07 3.93 3.86 

Contrast 0.92 0.88 0.92 0.91 0.92 0.88 0.88 0.88 0.87 0.86 0.85 

DR 11.9 8.50 12.3 11.6 11.8 8.31 8.35 8.40 7.56 7.28 6.81 

 
 

 



11     IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2022 

 

magnitude versus frequency as in the discrete excitation pulse. 1 

The result indicates that the FT magnitude spectrum of the 2 

discrete excitation pulse can be used to predict the FT magnitude 3 

spectrum of displacements. This is advantageous in customizing 4 

discrete excitation pulse based on the clinical application. 5 

Though the energy content of each frequency of discrete 6 

excitation pulse was different, the same excitation pulse was 7 

used to interrogate both background and inclusion. Therefore, 8 

normalized P2PD reflects the difference in mechanical 9 

properties between inclusion and background. Previous work 10 

also demonstrated that there was no significant difference in 11 

contrast or CNR of single frequency ST-HMI-derived images 12 

due to the difference in energy content of the oscillation 13 

frequency [43]. 14 

In this study, displacement was estimated using the 1-D NCC 15 

method [50]. While a deep convolutional neural networks-based 16 

motion estimator is proposed for ARFI imaging [62] with 17 

comparable performance to the Loupass phase-based 18 

displacement estimator, the NCC estimator generally provides 19 

higher accuracy than phase-based displacement estimators [50]. 20 

While the 2-D regularization-based displacement estimators 21 

[63]–[65] provide better axial displacement estimates in 22 

ultrasound quasi-static elastography, the displacement in the 23 

ARF-based methods is different from the quasi-static 24 

elastography in two ways. First, ARF generates stress 25 

predominantly in the axial direction which generally induces 26 

axial displacements of  0-20 µm and lateral displacements in the 27 

picometer range. Therefore, ARF-induced axial strain (<0.01%) 28 

 

Fig 10: In Vivo Bmode, ARFI-derived normalized peak displacement, and ST-HMI derived normalized peak-to-peak displacement image 
at 100-1000 Hz of a 4T1 mouse tumor on Day 6 (1st-2nd rows), Day 12 mm (3rd-4th rows), and Day 19 (5th – 6th rows) post-injection of tumor 
cell. Black, magenta, red, and blue contours represent tumor boundary, displacement image field of view, the region of interest in tumor 
and neighboring non-cancerous tissue, respectively.  
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is very small compared to the larger strain (5-10%) in quasi-1 

static elastography. Due to these smaller strains, signal 2 

decorrelation does not pose a problem in the ARF-induced 3 

displacement estimator. Second,  2-D ARFI or ST-HMI image 4 

was generated by exciting each lateral location (interval 0.3 or 5 

0.6 mm) independently. Therefore, combining 2 or more lateral 6 

lines in displacement estimation means combining more 7 

decorrelated signals which will increase the variance in the 8 

displacement estimator.  9 

The displacements at frequencies corresponding to the 10 

frequencies of the excitation pulse were calculated by adaptively 11 

finding the cutoff values of the bandpass filter (Fig. 3d). The 12 

passband of each frequency component will be different at the 13 

center of the inclusion versus near boundary or two different 14 

axial locations due to the variation in the ARF expiation beam 15 

point spread function (PSF) dimension. Note that, the ARF 16 

excitation PSF dimension varies with axial location with the 17 

smallest area at the focal depth. Due to the passband variation of 18 

each frequency component over spatial location, a custom 19 

algorithm was applied to find cutoff values at each pixel for 20 

bandpass filtering for each frequency component [43]. This 21 

adaptive bandpass filter cutoff is important to reduce the 22 

heterogeneity of the image. Adaptively finding the cut-off values 23 

is a faster process and usually takes 0.014 s for each pixel and 24 

frequency. One way to reduce the processing time is to calculate 25 

cut-off values at a 1 mm spatial interval instead of each pixel. 26 

Future work will explore the tradeoff between spatial intervals 27 

for calculating cut-off values versus image quality. The 28 

differential displacement profiles also contained higher 29 

harmonic frequencies (i.e., greater than 1000 Hz). Displacement 30 

at higher harmonic frequencies was not exploited because the 31 

energy of the frequency greater than the frequency of the 32 

excitation pulse is less controllable and depends on the relative 33 

location of the pixel.  34 

The feasibility of generating 2-D images at 100-1000 Hz using 35 

the proposed multi-frequency excitation pulse was tested in 36 

silico, in phantom, and in a breast cancer mouse tumor in vivo 37 

with comparison to ARFI imaging in terms of CNR and contrast. 38 

While both ARFI and ST-HMI detected the presence of a low 39 

elastic contrast spherical inclusion in an in silico phantom  (Fig. 40 

4), maximum contrast and CNR were achieved by ST-HMI at 41 

900 and 1000 Hz, respectively (Fig. 5). The advantage of 42 

generating P2PD at different frequencies simultaneously to 43 

delineate different sized 36 kPa inclusions in a commercial 44 

phantom is qualitatively demonstrated in Fig. 6. Qualitatively, 45 

ARFI and P2PD images (frequency ≥ 300 Hz) detected 10.4 and 46 

6.5 mm inclusions. However, 2.5 and 1.6 mm inclusions were 47 

not detected by ARFI whereas P2PD images at 900 and 1000 Hz 48 

were able to detect 2.5 and 1.6 mm inclusions. The background 49 

of 10.4 and 6.5 mm inclusion was noisier, especially at 700 Hz 50 

than other inclusion. It may be due to the presence of 51 

heterogeneity in the background which is picked up by 700 Hz 52 

or the corruption of 700 Hz by some kind of noise due to the 53 

lowest energy in 700 Hz. More investigations are needed to find 54 

the source of this particular noise.   55 

The further advantage of exploiting frequency to delineate 56 

inclusions with different sizes and stiffnesses is demonstrated 57 

quantitatively in Figs. 7 and 8. The maximum CNR and contrast 58 

achieved by ST-HMI were higher than ARFI irrespective of size 59 

and stiffness of inclusions. In addition, the highest CNR and 60 

contrast were achieved at different frequencies depending on the 61 

inclusion size and stiffness.  As the size and stiffness of the 62 

lesions or tumors are not known apriori, it is impossible to 63 

achieve maximum CNR and contrast using a single frequency. 64 

The main advantage of the proposed multi-frequency excitation 65 

pulse is that there is no need for apriori knowledge of lesions or 66 

tumors size or stiffness to achieve maximum CNR and contrast. 67 

These results demonstrate an advantage of using a multi-68 

frequency excitation pulse to simultaneously generate 69 

displacement maps at different frequencies instead of using a 70 

pulsed excitation pulse to generate displacement profiles with a 71 

wide frequency range as it is done in ARFI or single frequency 72 

ST-HMI.  73 

The general trend in ST-HMI-derived CNR and contrast is that 74 

the frequency, at which maximum CNR and contrast were 75 

achieved, increases with stiffnesses for fixed-size inclusion and 76 

decreases with size for fixed stiffness inclusion. This is 77 

expected. Because, in a material with fixed stiffness, the 78 

wavelength of the generated shear waves within the ARF 79 

excitation beam will be smaller for higher frequency. Therefore, 80 

higher frequencies are better to contrast smaller inclusions. 81 

Similarly, the wavelength will be larger for the stiffer materials 82 

(i.e., higher shear wave speed) for a fixed frequency [43]. 83 

However, the inclusion can be detectable even if a sub-84 

wavelength of a particular frequency is contained within the 85 

inclusion, and the contrast of inclusion increases with the 86 

increasing ratio of diameter over wavelength. As an example, the 87 

wavelength of 400, 500, and 1000 Hz in a 22.5 kPa in silico 88 

inclusion is 6.85, 5.48, and 2.74 mm, respectively. Note that, the 89 

inclusion was not detectable at 400 Hz but the detectability or 90 

contrast of the inclusion increases with frequency from 500 to 91 

1000 Hz (Figs. 4 and 5). The ratio of inclusion diameter (2 mm) 92 

over wavelength is 0.3, 0.36, and 0.73 at 400, 500, and 1000 Hz, 93 

respectively.  Therefore, the detection of the inclusion is feasible 94 

even if 36% of a wavelength is contained within the inclusion. 95 

Note, the detectability of the inclusion also depends on the ARF 96 

excitation beam PSF dimension in the lateral and elevation 97 

plane. The lateral and elevational dimension of the ARF 98 

excitation beam was fixed to 0.8 and 1.4 mm for in silico model 99 

and all phantom experiments. Future studies will investigate the 100 

spatial resolution of ST-HMI by considering both the oscillation 101 

frequency and PSF dimension. Note, the ST-HMI interrogates 102 

mechanical properties at the ARF-ROE without observing shear 103 

wave propagation away from the ARF-ROE. Therefore, the 104 

frequency is exploited to better detect inclusion due to the 105 

shearing within the ARF excitation beam. Shearing is occurred 106 

due to the nonuniform axial displacements within the ARF 107 

excitation beam PSF [48], [66].   108 

The CNR and contrast mainly increased with frequency until 109 

they reached maximum, and then decreased with frequency for 110 

6 and 9 kPa inclusion irrespective of size. However, the CNR 111 

and contrast increased with frequency for 36 and 70 kPa 112 

inclusions with 2.5 and 1.6 mm diameters which suggests that 113 

further optimization in ST-HMI performance is possible by 114 

using a higher frequency for these inclusions. Future works will 115 

test the feasibility of using frequencies up to 2000 Hz.  116 
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The contrast is not reciprocal between 9 kPa versus 36 kPa 1 

inclusions. This phenomenon is more pronounced for the smaller 2 

inclusions which may be due to bulk displacement of the 3 

inclusion as the focal zone of the ARF excitation beam was 4 

around 10 mm. The discord in the contrast between ARFI-5 

derived images of 9 versus 36 kPa is higher than in ST-HMI 6 

images (Fig. 7). The ARFI contrast was approximately 5 times 7 

higher in 9 versus 36 kPa with 2.5 and 1.6 mm diameter whereas 8 

the maximum median ST-HMI contrast was 1.2-1.6 times higher 9 

in 9 versus 36 kPa with the maximum difference for 2.5 mm 10 

diameter inclusion.  It is reasonable to expect that the maximum 11 

contrast of 36 kPa with 2.5 and 1.6 mm diameter inclusions will 12 

increase if the ST-HMI data were collected at a frequency 13 

beyond 1000 Hz. This is another advantage of using a multi-14 

frequency excitation pulse so that the contrast difference can be 15 

reduced between softer versus stiffer or different sized 16 

inclusions with the same true elastic contrast difference.  17 

The diminished contrast at 100 or 200 Hz may not be due to 18 

the minimal energy at those frequencies. As an example, while 19 

the contrast of a 6.5 mm 36 kPa inclusion was maximum at 700 20 

Hz (Fig. 7), the peak-to-peak displacement (P2PD) was 0.17 and 21 

0.05 µm at the center of the inclusion for 100 and 700 Hz 22 

respectively. Despite the lower displacement, the highest 23 

contrast was achieved at 700 Hz. Note, the displacement 24 

estimated by NCC was in the range of 1-5 µm (Fig. 3b). 25 

However, P2PD became sub-micron after differential 26 

displacement calculation and filtering out each frequency 27 

component. In addition, 200 Hz provided the maximum contrast 28 

for the 10.4 and 6.5 mm, 6 kPa inclusions. If it is due to minimal 29 

energy, maximum contrast should not be achieved at 200 Hz. 30 

Therefore, the frequency at which maximum contrast and CNR 31 

were achieved depends mainly on the size and stiffness of the 32 

inclusion. 33 

While delineating the true boundary of lesions is useful in 34 

surgical planning or guiding biopsy or monitoring the response 35 

of the treatment, like, shrinkage of tumors due to the 36 

chemotherapy response, the P2PD ratio of background over 37 

inclusion has the potential to be used as a relative stiffness 38 

indicator for longitudinal or cross-sectional studies [52]. Fig. 9 39 

and Table II show that the P2PD ratio is highly correlated with 40 

Young’s moduli irrespective of frequencies or inclusion sizes. 41 

However, the lowest RMSE was achieved at 400 and 1000 Hz 42 

for larger (10.4 and 6.5 mm) and smaller (2.5 and 1.6 mm) 43 

diameters, respectively which indicates that the size of the 44 

inclusion will confound the P2PD ratio derived relative stiffness 45 

assessment. Therefore, there is a need to develop a normalizing 46 

term accounting for the inclusion size before using the P2PD 47 

ratio as a relative stiffness indicator. Note, a similar confounding 48 

effect of inclusion size on the ARFI PD ratio was also observed. 49 

However, the P2PD ratio at 1000 Hz had lower RMSE than 50 

ARFI irrespective of size or after combining all diameters. The 51 

future study will investigate the use of either the P2PD ratio at 52 

1000 Hz or the P2PD ratio at each frequency with a normalizing 53 

term to monitor disease progression or regression. 54 

These results in the phantoms are very promising. However, 55 

phantoms are the idealistic representation of tissues. In vivo 56 

performance of ST-HMI was evaluated by imaging a 4T1 mouse 57 

tumor on Day 6, 12, and 19.  While ARFI and ST-HMI-derived 58 

DR indicated the tumor became stiffer over time, the size of the 59 

tumor was not taken into account. As discussed previously 60 

related to Fig. 9 and Table II, the size of the tumor will confound 61 

the DR change over time. While ARFI normalized PD was lower 62 

than ST-HMI normalized P2PD in the tumor, especially on Day 63 

6, ST-HMI at 400 Hz achieved the highest contrast (Table II) 64 

because normalized P2PD was higher than PD in the nearest 65 

non-cancerous tissue. Similar to phantoms, the CNR of ST-HMI 66 

images was higher than ARFI and increased with frequency, 67 

especially for the smaller tumor on Day 6. Note, the change in 68 

CNR with frequency was higher in the phantom (Fig. 8) than in 69 

the tumor. It may be due to the change in ROI in the tumor 70 

(rectangle, Fig. 10) from the phantom (circle, Fig. 3) for CNR 71 

calculation. As there is no background/non-cancerous tissue 72 

concentric to the tumor, rectangle ROI was used. As the 73 

displacement is calculated “on-axis” to ARF, the boundary is 74 

distorted more in the axial than lateral direction (Figs. 4 and 6). 75 

While the perceived detectability of the tumor was higher for 76 

larger the tumor, the CNR of the larger tumor was the lowest 77 

irrespective of methods. It may be due to either not having 78 

enough non-cancerous tissue ROI for the CNR calculation or the 79 

tumor along with neighboring tissues becomes heterogeneous 80 

over time. Future studies with histopathological validation will 81 

be performed to answer this question. 82 

In this study, B-mode-derived boundary was used as 83 

comparative benchmarks rather than ground truth boundary to 84 

select ROI for the CNR and contrast calculation. While there 85 

was no noticeable difference in echogenicity between inclusion 86 

and background, there is a slight change in the echogenicity at 87 

the boundary (arrowhead in Fig. 6) which guides us to draw the 88 

boundary. In addition, the inclusion’s ROI area was smaller than 89 

the inclusion size. Therefore, the effect of boundary derivation 90 

will be minimal for comparing ARFI and ST-HMI images as the 91 

same ROI, correctly located in background and inclusion, was 92 

used for CNR and contrast calculation. As this study 93 

demonstrates that multi-frequency ST-HMI can detect 94 

inclusions at different sizes and stiffnesses, future studies aim to 95 

develop techniques for automated boundary detection based on 96 

the multi-frequency displacement images. 97 

While multi-frequency ST-HMI demonstrated better contrast 98 

and CNR than ARFI, the data collection and processing time is 99 

higher in ST-HMI compared to the ARFI (Table I). Due to the 100 

separation (at least 1 ms) of the discrete excitation pulses (Fig. 101 

2a), the temperature rise due to ST-HMI was less than 1oC which 102 

is within the U.S. FDA limits [43], [67]. ARFI-derived PD image 103 

is used as a comparative benchmark of the “on-axis” 104 

displacement image because PD has already been used to 105 

characterize different biological tissues [51], [68]–[71]. 106 

However, CNR, contrast, and resolution of ARFI-derived 107 

displacement images can be improved by generating 108 

displacement images at different time points [30] which also 109 

makes it very difficult to compare with ST-HMI. As the contrast 110 

is usually maximized at later time points, especially for softer 111 

inclusions, observed displacements are a combination of the 112 

recovery and the reflected shear wave, which makes their 113 

magnitude become unreliable and results in decreased resolution 114 

[30]. In addition, later time points are more susceptible to being 115 

corrupted by motion artifacts and may show a reversal of 116 
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inclusion contrast i.e. stiffer inclusion may appear as a softer or 1 

vice versa [57]. Future studies will be conducted to perform a 2 

detailed comparison of ARFI-derived optimized displacement, 3 

multi-frequency ST-HMI-derived P2PD, and shear wave-4 

derived group and phase velocity images in terms of CNR, 5 

contrast, and resolution with or without the presence of motion 6 

artifacts. 7 

This feasibility study of generating multi-frequency oscillation 8 

simultaneously using the proposed excitation pulse 9 

demonstrated very promising results. However, the study has 10 

four main limitations. First, only two examples of the 11 

combination of excitation and tracking pulses were 12 

demonstrated. In theory, a different combination of discrete 13 

excitation pulse numbers and the location of discrete pulses can 14 

be used to generate 100-1000 Hz frequencies with varying 15 

amplitude. We hypothesize that results will not vary 16 

significantly depending on the excitation pulse number and 17 

location of the discrete pulse because the previous study showed 18 

that results were similar for the same frequency with different 19 

energy contents [43]. However, more experiments are needed to 20 

validate the hypothesis. Second, P2PD was used as a  relative 21 

indicator of viscoelastic properties. In the future, filtered 22 

displacement profiles at each frequency can be fit to a well-23 

known rheological model to separate the contributions of 24 

elasticity and viscosity [34], [35]. Future studies will also test 25 

the feasibility of correcting attenuation between cancerous  26 

versus healthy tissue using displacement at multiple frequencies. 27 

Third, the mechanical anisotropy of tumors [72] was ignored. In 28 

the future, the mechanical anisotropy will be assessed using 29 

P2PD at each frequency generated using two orthogonal point 30 

spread functions  [49], [51], [73]. Fourth, there was no 31 

demonstration of the proposed multi-frequency pulse in humans. 32 

The translation of the proposed pulse in the clinics should be 33 

straightforward as the previous work using single-frequency ST-34 

HMI has shown strong promise in delineating breast masses in 35 

humans [43]. One potential challenge is to provide enough 36 

energy at each frequency to exceed the noise floor, especially for 37 

deeper and stiffer tissue. One potential solution is to collect the 38 

data in two steps as mentioned earlier. Future works will apply 39 

the proposed multi-frequency pulse for imaging tumor masses in 40 

breast cancer patients. 41 

V. CONCLUSION 42 

In this study, the feasibility of generating ST-HMI-derived 43 

P2PD at multi-frequency was presented using an excitation pulse 44 

composed of a sum of sinusoids with frequency from 100 to 45 

1000 Hz.  The performance of the proposed excitation pulse was 46 

evaluated by imaging 16 different inclusions with varying 47 

stiffnesses and sizes and was compared to the ARFI imaging.   48 

The highest CNR and contrast were achieved at a frequency 49 

dependent on the inclusion size and stiffness.  The maximum 50 

CNR and contrast achieved by ST-HMI were higher than ARFI 51 

irrespective of inclusion size and stiffness. The P2PD ratio is 52 

highly correlated with Young’s moduli irrespective of 53 

frequencies or sizes with the lowest RMSE overserved at 1000 54 

Hz.  The P2PD ratio of non-cancerous tissue over tumors 55 

increased over time indicating stiffening of the tumor. ST-HMI 56 

was capable of detecting as small as 1.6 mm diameter inclusion 57 

in phantom. These findings indicate the advantages of using a 58 

multi-frequency excitation pulse to simultaneously generate 59 

oscillation at several frequencies to better delineate inclusions or 60 

lesions. 61 
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