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ABSTRACT 

Medical imaging-derived tumor or lesion size quantification 

provides clinically relevant information for diagnosis and 

treatment monitoring. Multi-frequency single transducer 

harmonic motion imaging (ST-HMI) is an acoustic radiation 

force (ARF) based ultrasound elastography method that 

interrogates tissue mechanical properties by transmitting a 

multi-frequency ARF excitation pulse and estimating the 

induced oscillatory displacements at 100-1000 Hz frequency 

simultaneously. In this study, an automated lesion size 

assessment method is presented using the U2Net-based 

convolutional neural network (CNN) model. The training-

validation set contains 1094 multi-frequency ST-HMI images 

of heterogeneous phantoms with the inclusion’s Young’s 

moduli ranging from 6-70 kPa and diameters ranging from 

1.7-10.5 mm. For each of the 1094 images, ST-HMI-derived 

normalized peak-to-peak displacement (P2PD) images at 

100-1000 Hz in the step of 100 Hz were used as the input to 

the U2Net. Dice score, sensitivity, specificity, and area 

estimation error were used to evaluate the performance of the 

model in the test phantom data set, in vivo 4T1 breast cancer 

mouse tumors, and ex vivo focused ultrasound (FUS)-

induced thermal lesions. The average ± standard deviation of 

(Dice score, sensitivity, and specificity) was (0.92±0.04, 

0.92±0.05, 0.99±0.01), and (0.87±0.07, 0.96±0.04, 0.95±0.04) 

in the phantoms and mouse tumors, respectively. The average 

absolute error in the model-predicted area of FUS-induced 

lesion was 9.45±0.77%. These results demonstrated the 

potential of multi-frequency ST-HMI to determine tumor size 

change in chemotherapy treatment monitoring and lesion size 

in ablation therapy guidance using CNN. 

Index Terms— Tumor size, ablation margin, single-

transducer harmonic motion imaging, neural network 

 

1. INTRODUCTION 

 

The size of medical imaging-derived lesions, including 

tumors or thermally ablated areas, is clinically relevant both 

in diagnosis and therapy guidance. Tumor size monitoring 

could help physicians to assess the anticancer therapy 

response [1] and determine the appropriate dosage for 

treatment planning [2]. In addition, intraoperative imaging is 

used to assist surgeons to delineate tumor boundaries for 

surgical resection, in applications including liver [3], 

pancreatic tumor [4], or thermal ablation of liver cancer [5]. 

An accurate margin covering the whole tumor could prevent 

local recurrence and improve survival rates. While computed 

tomography [6] and magnetic resonance imaging [7] are 

generally used to assess tumor size and location pre-and post-

operatively to evaluate treatment efficacy, ultrasound-based 

methods can not only be used intra-operatively to guide 

surgery or ablation treatment but can be also used in 

longitudinal monitoring of treatment response due to its low 

cost, portability, and non-ionizing characteristics.     

While B-mode ultrasound is typically used for tumor 

size assessment or thermal treatment guidance, ultrasound 

elastography can reduce the risk of underestimation of tumors 

or thermal lesions [8]. One subset of ultrasound elastography-

based methods is ARF-induced ‘on-axis’ displacement or 

‘off-axis’ shear wave imaging [9]. In contrast to the ‘off-axis’ 

shear wave imaging, on-axis methods, including ARF 

impulse (ARFI) imaging [10]  and harmonic motion imaging 

(HMI) [11], provide relative stiffness but have higher spatial 

resolution and are less subjected to tissue heterogeneity. HMI 

simultaneously uses a focused and an imaging transducer to 

generate amplitude-modulated ARF and to track on-axis 

oscillatory motion. The advantage of HMI is that known input 

oscillations can be easily filtered out from the other motion 

artifacts. To reduce the complexity of the current HMI data 

system consisting of two separate transducers and a 

mechanical positioner, ST-HMI has been proposed [12]. ST-

HMI uses a single imaging transducer for both generating and 

tracking oscillatory motion by interleaving tracking pulses 

with excitation pulses and generating a 2-D image by 

electronically steering the excitation and tracking beam. 

However, the performance of ST-HMI in delineating the 

inclusion’s size depends on the oscillation frequency [13].  

Instead of separately collecting motion data at multiple 

frequencies to improve performance, ST-HMI with a multi-

frequency excitation pulse has been developed to induce and 

estimate oscillatory motion at 100-1000 Hz in a single 

acquisition [9]. It has been shown that the oscillation 

frequency can be exploited to optimize the inclusion image 

quality without prior knowledge of the inclusion’s stiffness 

or size [9]. For example, 1000 and 700 Hz provided the 

highest CNR for 2.5 and 10.4 mm diameter inclusions with 

Young’s modulus of 36 kPa [9]. However, assessing the size 

of the inclusion by sorting out the best frequency is manually 



cumbersome and may have subjective variability. In addition, 

the dynamic color range in the image can also impact the 

perceived lesion size. Therefore, there is a need for an 

accurate and less manual input-based method to assess lesion 

size.  

Convolutional neural networks (CNN) have been 

widely used to evaluate tumor size on B-mode ultrasound 

images. U-shaped CNN-based models (e.g. UNet) have 

shown promising results in breast, prostate, and liver tumor 

detection using B-mode, MRI, and CT images [13]–[15]. 

However, to the authors’ knowledge, the CNN network was 

never used to assess tumor size and thermal lesions using 

ultrasound elastography images.  

The objective of this study is to develop an accurate and 

automated tumor and FUS-induced lesion size assessment 

tool using U2Net [16] by exploiting ST-HMI-derived P2PD 

images at 100-1000 Hz. U2Net was chosen due to its multi-

scale feature extraction capability and strength in dealing 

with images of multiple resolutions and segmentation 

conditions [16]. The performance of U2Net was the best in 

segmenting median nerve on the B-mode images compared 

to the UNet and ResUNET [17]. The output probability map 

from the network is considered the predicted boundary of the 

input. The U2Net model was trained on a phantom data set 

[9]. Data augmentation (adapted from Pytorch RandomCrop) 

was performed to increase the dataset size to 1096. The 

robustness of the model was tested on the phantom inclusion 

with stiffness and size different from the training data, with 

the presence of different aberrating layers, FUS-induced 

lesions in pork muscle, and in vivo 4T1 mouse dataset [9]. 

The main contribution of this study is two-fold. First, we 

adapted U2Net to accommodate ST-HMI-derived multi-

frequency displacement images at 100 to 1000 Hz in steps of 

100 to assess lesion size automatically. Second, the 

robustness of the model was tested in the in vivo and ex vivo 

tissues with lesion shapes different from the training shapes. 

Note, the model was trained in the phantom dataset with 

circular inclusion. 

2. METHOD 

 

2.1. Dataset description and preprocessing 

 

A total of 548 multi-frequency P2PD images at 100—1000Hz 

were split into training (431) and validation (117) datasets. 

They were acquired using an L7-4 transducer (Philips 

Healthcare, Andover, MA, USA) operated by a Verasonics 

research system (Vantage 256, Verasonics Inc., Kirkland, 

WA, USA) with and without aberration noise (i.e., wire mesh 

was placed between the transducer and phantom surface). 

Multiple acquisitions were collected by moving the 

transducer in elevational directions. A detailed description of 

data collection can be found in [9]. In addition to the original 

images, images were cropped in the background to increase 

the dataset size. Cropping was performed in such a way that 

the background area and background-to-inclusion area ratio 

was different between different cropped images.  

We tested our model in four different datasets: (1) 

cylindrical inclusions with identical stiffness and size but at 

different elevational locations compared to the training-

validation set.  (2) spherical inclusions with Young’s moduli 

of 40 and 160 kPa embedded in a 10 kPa background with 

and without aberration noise which represents different 

stiffness and boundary configurations compared to the 

training-validation set (3) in vivo mouse tumor at 6 and 19 

days post-injection of 4T1 tumor cells (4) focused ultrasound 

(FUS)-induced thermally ablated lesions in the ex vivo pork 

muscles [9]. Mouse tumors were imaged using an L11-5 

linear array transducer. Therefore, this dataset tested the 

model robustness on in vivo data and different transducers. 

The FUS lesions were ablated for 40 seconds and 3 minutes 

at a peak positive pressure of 8.5 MPa.  

Histogram equalization (HE) proved to be an effective 

image enhancement technique for kidney ultrasound image 

segmentation if object edge detection is the focus [18]. An 

adaptive HE (CLAHE) was used for the phantom dataset 

(patch size = (4, 4), limit = 2). HE (equalizeHist) was 

performed on in vivo and ex vivo datasets because the large 

range of variation in the size and intensity of the noise pattern 

prevented setting a reasonable limit and tile size. 

 

2.2. Architecture 

 

The CNN for this study is adapted from the structure of 

U2Net [16]. Within each layer of the network, the 

conventional Conv blocks were replaced by Residual U 

Blocks (RSU). A side output probability map was generated 

to calculate the loss at this layer, and then the loss of all layers 

was combined with the loss of the output layer to form the 

loss function. The input was normalized P2PD images at 10 

frequencies with a dimension of (10, 144, 144) and the output 

was (1, 144, 144), which represented the probability of the 

pixels classified as inclusion.  

Based on the characteristics of the multi-frequency ST-

HMI data, two modifications were made to the original 

structure. First, instead of using binary cross entropy as the 

loss function, Dice coefficient loss [19] was used in this study 

because DICE exhibits robustness in dealing with imbalanced 

classes [19]. Second, instead of the five-layer structure in the 

original U2Net, a lightweight four-layer structure is used due 

to the amount of training data and the complexity of the task.  

 

2.3. Implementation details and evaluation metrics 

 

The network was trained for 80 epochs, using a learning rate 

scheduler with default hyper-parameters (lr=0.001, 

betas=(0.9, 0.999), eps=1e-8, weight decay=0). The learning 

curve reached a plateau at the end of training, which verified 

that the learning was completed after 80 epochs of training. 

The network was performed on GPU NVIDIA Quadro P400 

with a total time of 6 hours. The best epoch (56) was selected 

based on the best Dice score (0.83) on the validation dataset. 

To evaluate the accuracy of the model in predicting 



boundaries compared to manually drawn boundaries, the 

Dice similarity score, sensitivity, and specificity were 

calculated for phantom and in vivo tissue data, and area 

estimation errors were calculated for FUS-induced lesions.  

 

3. RESULT AND DISCUSSION 

 

3.1. Phantom with cylindrical and spherical inclusions 

First, for the phantom with cylindrical inclusions, the network 

can predict boundaries regardless of the stiffness of 

inclusions with a Dice score (mean ± standard deviation) of 

0.91 ±0.03, 0.82± 0.06, 0.91± 0.06, 0.95± 0.03, 0.95± 0.03 

for inclusions of 1.7 mm, 2.5 mm, 4.1 mm, 6.5 mm, and 10.5 

mm, respectively. The prediction accuracy is higher for larger 

inclusions. But the performance of 2.5 mm is relatively low 

compared to other sizes. This may be due to the low contrast 

of the 2.5 mm B-mode images, which impacted manual 

boundary delineation. However, more investigations are 

needed to find the source of the lower accuracy for 2.5 mm. 

Figure 1. shows the P2PD images at 300 Hz and B-mode 

images for spherical inclusions. The Dice score over 4 

positions are 0.97±0.01, 0.97±0.01, 0.95±0.01,  0.94±0.001, 

0.90±0.01, 0.89±0.004, for 40kPa, 40kPa with chicken layer, 

160 kPa with wire mesh, 160 kPa with chicken layer, and 160 

kPa with pork layer. When the imaging field of view was 

subjected to laterally different acoustic forces due to the 

inhomogeneous attenuation (panel (b) denoted by red arrows 

on the left and right side of the inclusion), the network was 

still able to delineate the boundary. The prediction accuracy 

was worse for stiffer inclusion because higher stiffness 

differences between background and inclusion induced a 

higher boundary effect (panels (g-i), denoted by black 

arrows). In addition, 160 kPa has a 4 times higher stiffness 

difference from that of the largest difference in the training 

data set. 

 

3.2. In vivo 4T1 breast cancer mouse model 

 

The (Dice score, sensitivity, and specificity) for mouse 1 on 

Day 6 and Day 19 are (0.93, 0.92, 0.99) and (0.88, 0.99, 0.88), 

respectively. The (Dice score, sensitivity, and specificity) for 

mouse 2 on Day 6 and Day 19 are (0.76, 0.99, 0.96) and (0. 

92, 0.94, 0.9), respectively. The P2PD and B-mode images 

with predicted and true boundaries are shown in Figure 2. 

The tumor boundary was not always clear on B-mode, but an 

approximation can be made based on the slight echogenicity 

difference to provide the comparative benchmark for the size 

assessment.  

 

3.3. Ex vivo FUS-induced lesion in pork muscles3.4.  

 

Figure 3. shows the P2PD, B-mode, and gross pathology for 

the two lesions. The P2PD images are presented at 200, 600, 

and 1000 Hz to show the variation in perceived lesion shape 

across frequencies. The predicted boundaries are consistent 

with the gross pathology images, with an absolute area error 

of approximately 10% (3 min) and 8.9% (40 s). The network 

predicted ellipse boundaries, despite the perceived shape of 

lesions in P2PD images being roughly rectangular, especially 

for 3 min. This may be because the network was trained 

purely on circular inclusions. 

 

Figure 2. Predicted (white) and true boundaries (red) of mouse 1 

and mouse 2 on Day 6 and Day 19. (a, b): P2PD images at 100Hz 

and 600Hz. (c, d): B-mode images with manually drawn 

boundaries. The black arrows in (e-h) denote the echogenicity 

differences used to infer the tumor boundaries. 

3.4. Limitations and Future Studies 

 

There are mainly three limitations in this study. First, Bmode-

derived boundaries were used as comparative benchmarks. 

Future studies will evaluate the model in digital phantoms 

with known boundaries. Second, only circular-shaped 

inclusions were used in the training validation sets which 

made it difficult for the model to predict the tumor and FUS-

 
Figure 1. Predicted (white) and true boundary (red) of 

spherical inclusions. 1st and 2nd row: 40 kPa without (a, d) and 

with chicken (b, e) and pork (c, f) layer. The red arrows mark 

the difference in acoustic force between the left and right sides 

of the inclusion. 3rd row: 160 kPa with wire mesh (g), with 

chicken (h), and pork (i) layer. The black arrows (g, h, i) mark 

the boundary effects.  



lesion shape correctly (Figures 2 and 3). In future studies, we 

will train the network on the inclusions of different shapes 

and incorporate average distance loss and B-mode to improve 

its performance in predicting irregular shapes. Note that, B-

mode is collected as a part of the ST-HMI sequence. Third, 
while the advantage of U2Net over UNet and ResUNET was 

shown in the segmentation of Bmode ultrasound median 

nerve images [17], no comparison was performed in this 

study for ST-HMI imaging. Future studies will compare 

different CNN structures using ST-HMI imaging. 

 

4. CONCLUSION 

 

An automated tumor size assessment tool using CNN on ST-

HMI-derived P2PD images is presented in this study. The 

network was trained on normalized P2PD images of 

phantoms with different size and stiffness inclusions and can 

predict lesion boundaries in tissue-mimicking phantoms, in 

vivo and ex vivo tissues with different sizes, stiffness, and 

aberrating conditions with an average accuracy of 0.90. Our 

future work is to apply it to more irregularly shaped lesions 

and breast tumors in patients. 
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Figure 3. Predicted (white) overlayed with P2PD images of pork    

muscles after HIFU experiments of 3 min (1st row) and 40 s (2nd 

row), B-mode images and photographs.  


