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Cardiac Lesion Mapping In Vivo Using
Intracardiac Myocardial Elastography
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Abstract—Radio frequency (RF) ablation of the myocardium
is used to treat various cardiac arrhythmias. The size, spacing,
and transmurality of lesions have been shown to affect the
success of the ablation procedure; however, there is currently
no method to directly image the size and formation of ablation
lesions in real time. Intracardiac myocardial elastography (ME)
has been previously used to image the decrease in cardiac strain
during systole in the ablated region as a result of the lesion
formation. However, the feasibility of imaging multiple lesions
and identifying the presence of gaps between lesions has not yet
been investigated. In this paper, RF ablation lesions (n = 7) were
generated in the left ventricular epicardium in three anesthetized
canines. Two sets of two lesions each were created in close
proximity to one another with small gaps (1.5 and 4 cm), while
one set of two lesions was created directly next to each other
with no gap. A clinical intracardiac echocardiography system
was programmed to transmit a custom diverging beam sequence
at 600 Hz and used to image the ablation site before and after the
induction of ablation lesions. Cumulative strains were estimated
over systole using a normalized cross-correlational displacement
algorithm and a least-squares strain kernel. Afterward, lesions
were excised and subjected to tetrazolium chloride staining.
Results indicate that intracardiac ME was capable of imaging
the reduction in systolic strain associated with the formation of
an ablation lesion. Furthermore, lesion sets containing gaps were
able to be distinguished from lesion sets created with no gaps.
These results indicate that the end-systolic strain measured using
intracardiac ME may be used to image the formation of lesions
induced during an RF ablation procedure, in order to provide
critical assessment of lesion viability during the interventional
procedure.

Index Terms— Ablation, elastography, intracardiac, lesion,
strain, ultrasound.

I. INTRODUCTION

ADIO frequency (RF) ablation procedures aim to correct
various types of arrhythmia by thermally ablating select
regions of the cardiac tissue thought to contribute to the
abnormal rhythm. Success rates for ablation procedures have
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been reported in the range of 53%—-57% for a single procedure
and 71%-80% after multiple procedures [1], [2]. The size,
spacing, and depth of the lesions in the tissue have been shown
to be critical to the success of an ablation procedure [3]-[6],
motivating the development of new methodologies to charac-
terize lesion formation in real time. Conventionally, lesion size
has been controlled using temperature, amplitude, and duration
of the RF energy provided by the ablation system [7], [8].
Contact force of the ablation catheter has also recently been
proposed as a method to control lesion size [9], [10]. However,
these methods mainly rely on indirect feedback derived from
the ablation catheter instead of direct assessment of myocardial
tissue properties and function. As a result, several imaging
techniques have been developed to provide more direct map-
ping of lesion formation within the myocardium. Magnetic
resonance imaging [11], [12] has been used to characterize
lesion size; however, the specialized equipment and long
acquisition times required do not allow real-time monitoring
during the procedure. On the other hand, echocardiography
has advantages of being fast, low cost, and already highly inte-
grated into the field of interventional cardiology. Intracardiac
echocardiography (ICE) is often used during cardiac ablation
procedures in order to visualize and monitor the cardiac
motion during surgery. The ICE probe may be introduced
into the heart using the same route as the ablation catheter,
allowing for a convenient imaging view of the ablation site.
ICE catheters integrated with high-frequency ultrasound have
been used to map lesion formation in real time, using the
change in tissue contrast to identify lesion formation [13], [14].
Other ultrasound methods use the fact that stiffening of the
cardiac tissue occurs as a result of lesion formation. Shear
wave elastography (SWE) uses the shear wave propagation
induced by a “push” beam to map tissue stiffness and has been
applied to the detection of ablation lesions in beating hearts
using an ICE catheter [15]-[18]. Acoustic radiation force
imaging (ARFI) also uses an acoustic “push” beam to estimate
the displacement at the push location to provide a relative
stiffness estimation and was applied to lesion detection in
several studies [19], [20]. However, the significant attenuation
experienced by the high-frequency probe and by the push beam
in the case of SWE and ARFI has thus far required that the
imaging transducer to be located within a few centimeters
of the lesion. In clinical practice, it may prove challenging
to manipulate and align the imaging and ablation catheters
in close proximity during the procedure. ICE has also been
used for mechanical characterization of the myocardium using
strain [21], [22] and strain rate imaging [23], [24].
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Recent advancements in plane wave and diverging beam
transmissions have been applied to ICE as well [17], [21].
Diverging beam transmissions allow for the simultaneous
interrogation of a large field of view, allowing for high
frame-rate imaging which has been linked to superior motion
and strain estimation [25], [26]. Intracardiac myocardial
elastography (ME) has been developed to perform real-
time strain imaging using a diverging beam transmission
and a fast method of normalized cross-correlation [27].
By taking advantage of the phase of the ultrasound RF
data, strain estimation using normalized cross-correlation has
been shown to provide for high precision displacement and
strain estimation [28], [29]. ME has previously been val-
idated against magnetic resonance tagging and has been
used to identify ischemic and infarct regions within the left
ventricle (LV) [30], [31]. In regards to cardiac ablation,
ME using ICE has previously demonstrated feasibility in
detecting the formation of ablation lesions in humans and
canines using a clinical ultrasound scanner [21], [32]. How-
ever, the use of intracardiac ME to image multiple lesions
within the same echocardiographic view has not yet been
performed.

In this paper, a large animal ablation study (n = 3)
with strain estimation using a clinical ultrasound system is
described. Using ME, we show that a reduction in strain can
be used as a marker for the formation of an RF ablation lesion
in vivo and that the area affected by the change in strain is
correlated with lesion volume. Furthermore, we demonstrate
the initial feasibility of ME in monitoring the formation of a
lesion line, i.e., multiple lesions placed in close proximity and
identifying the presence or absence of gaps between individual
lesions. These results further strengthen the role of strain
imaging for ablation monitoring and present ME as a potential
technique for real-time feedback during clinical procedures.

II. METHODS

A. Experimental Setup

Using a protocol approved by the Columbia University
Institutional Animal Care and Use Committee, three mongrel
dogs weighing approximately 25 kg each were anesthetized
using 0.15 mg/kg morphine and sustained under 2%-5%
inhaled isoflurane. A lateral thoracotomy procedure was used
to expose the heart for placement of the ablation catheter
(TactiCath, St. Jude Medical) on the epicardial surface of
the LV (Fig. 1). A 6-MHz ICE catheter (ViewFlex, St. Jude
Medical) was introduced into the external jugular vein and
advanced through the superior vena cava into the right ven-
tricle of the heart, where it was positioned to have a view of
the lateral wall of the LV. Alignment between the ICE plane
and ablation catheter was achieved by noting the presence
of the high reflection produced by the ablation catheter in
the standard B-mode image provided by the scanner (green
arrow in Fig. 1). The ICE catheter was connected to a
clinical ultrasound machine (z.one, Zonare Medical Systems)
programmed to emit a specialized sequence for ME imaging
which is described in Section II-B.

Ablation lesions were generated at various locations in the
epicardium of the LV after confirming alignment between

ICE Catheter

Diverging Beam
2 secs @ 600 fps

Fig. 1. ICE and ablation catheter placement during experiment. Green arrow
indicates position of ablation catheter in ICE view used for alignment.

the ablation catheter and ICE view as described above.
Seven lesions of different sizes were formed in three dogs
using 20 W of power and 20 g of contact force for 60 s
each. In two dogs, lesion lines consisting of two lesions were
formed having a small gap between lesions (1.5 and 4 cm).
Gap distances were defined from the center of each lesion.
In one dog, a lesion line was formed with two lesions directly
next to each other with no gap in between. Ultrasound acqui-
sitions were performed before and >5 min after the induction
of each individual ablation lesion.

B. Myocardial Elastography

The ME acquisition sequence was designed for high frame-
rate imaging and consisted of repeated diverging wave emis-
sions at 600 Hz at an 1l-cm depth for 2 s to ensure
capture of the entire cardiac cycle. Each diverging wave
contained a focus placed at 6.5 mm behind the probe in
order to form a 90° field of view. For each diverging wave,
delay-and-sum reconstruction was performed offline using a
GPU-accelerated CUDA kernel to reconstruct images at a rate
exceeding 500 Hz. The final image stack consists of RF frames
containing of 193 lines at a 90° field of view with an axial spa-
tial sampling rate of 18 MHz. ECG measurements were also
obtained in synchrony with ultrasound imaging. A fast method
for normalized cross correlation was used to estimate 1-D axial
displacements for the entire view between consecutive
frames (window size = 6.16 mm and overlap = 90%) [27]
at a rate exceeding 600 Hz. These interframe displacements
were tracked throughout systole and accumulated over time to
form Lagrangian cumulative displacements. Axial cumulative
strain was derived from the cumulative displacements using a
least-squares estimator with a 1-D axial kernel (window size =
0.515 mm). Manual selection of the systolic phase was guided
by the ECG and an M-mode image of the displacements of the
center line of the image stack [Fig. 2(B)]. The myocardium
was segmented manually based on the B-mode image at end
diastole.

C. Quantification of Lesion Size

The cumulative end-systolic strain distribution estimated
using ME was used to quantify the mechanical changes caused
by the ablation lesion and to generate a lesion map. The lesion
area was computed to be strains located at the ablation site
which were close to zero, defined as between —3% and +3%
end-systolic strain. This threshold allowed a visualization of
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Fig. 2. Description of strain estimation methods. (A) Normalized cross
correlation is used to estimate interframe displacements throughout the
myocardium. (B) Systole is chosen manually based on the ECG and dis-
placements, allowing for (C) interframe displacements to be accumulated
throughout systole and converted to systolic strain using a least-squares
estimator.
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Fig. 3. Methods for determining lesion volume based on strain computed
from (A) intracardiac ME and (B) TTC staining.

the lesion area in the region of the image near the ablation
location, i.e., a lesion map (Fig. 3). The area of the lesion was
computed from the lesion maps as shown in Fig. 3 by counting
the number of pixels contained within the thresholded lesion.
This area was then compared to the actual lesion volume
measured ex vivo.

Following the experiment, the lesions were excised from
the cardiac tissue and subjected to tetrazolium chloride (TTC)
staining and measurement (Fig. 3). Lesion volume was cal-
culated from gross pathology by assuming a half-ellipsoidal
shape and measuring the three appropriate axes in the
TTC-stained tissue (L, W, and D) as shown in Fig. 3.

III. RESULTS

Fig. 4 depicts the end-systolic strains and displacements in
the LV before and after the application of ablation for a single

End-systolic Strain

End-systolic Displacement

=2

Before ablation

o

After ablation

Fig. 4. End-systolic displacement and strain distribution obtained in the
canine LV (A) and (C) before ablation and (B) and (D) 5 min after ablation
for a single isolated lesion. (E) TTC staining of the excised lesion is performed
ex vivo to demonstrate the extent of the lesion. Axes units in centimeter.

isolated lesion. Before ablation, end-systolic strain is positive
in both the septum (top of image) and lateral wall (bottom
of image) in each case. After ablation, a large decrease in
strain is observed near the epicardium of the lateral wall. The
regions of the myocardium remote from the lesion site also
show similar end-systolic strains before and after the ablation.
The strain image has been saturated at +5% strain to indicate
the presence of healthy myocardium.

In Fig. 5, the end-systolic strain for the two lesion lines
containing no gap is shown. Again, myocardial strain is
positive throughout the septal and lateral walls before the
formation of the lesions [Fig 5(A)]. Following the formation
of the first lesion [Fig. 5(B)], a localized reduction in strain
is present in the lateral wall. Following the formation of
the second lesion [Fig. 5(C)], this area of strain reduction is
increased. Images of the epicardial surface in vivo [Fig. 5(D)]
and the TTC staining [Fig. 5(E)] confirm that there is no gap
present between the two lesions. The size and transmurality
of the lesions shown in Fig. 5(C) are also in agreement with
the TTC staining.

Figs. 6 and 7 demonstrate the end-systolic strain for the
formation of the lesions within the same view containing a
gap between them. Following the formation of the first lesion
[Figs. 6(B) and 7(B)], a localized reduction in strain is present
as shown in Figs. 3 and 4. Following the formation of the sec-
ond lesion [Figs. 6(C) and 7(C)], a second region of localized
strain reduction appears in a region remote from the first.
However, positive strain indicative of healthy myocardium
persists in the space between the two lesions, identifying the
gap that exists between the two lesions. The presence of the
gap is confirmed through the image of the epicardial surface
[Figs. 6(D) and 7(D)]. The gap shown in Fig. 7(C) (4 cm) is
significantly wider compared to Fig. 6(C) (1.5 cm), which is
also confirmed by the images of the epicardial surface.
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Fig. 5. End-systolic strain distribution obtained in the canine LV after the
creation of two lesions without a gap in between. Cumulative end-systolic
strain is shown (A) before ablation, (B) 5 min after the creation of the first
lesion, and (C) 5 min after the creation of the second lesion. (D) Surface
image of the lesion obtained in vivo and (E) result of TTC staining of the
excised lesions. Epicardial surface is towards the top in (E). Axes units in
centimeter.

A correlation plot between the lesion area measured using
ME and lesion volume measured in histology is shown
in Fig. 8. The lesions contained within the no-gap set were
quantified individually and as a group. A high correla-
tion (r2 = 0.91) was obtained between the lesion maps based
on end-systolic strain and histology. Without including the
no-gap lesion set as a single lesion in the plot, the correlation
was r? = 0.64.

IV. DISCUSSION

In this paper, we have described a strain-based method,
ME, for characterizing the size and location of ablation lesions
within the myocardium using a clinical ICE system which can
be used during interventional procedures in real time. We have
demonstrated that a local reduction in end-systolic strain is
associated with the formation of an ablation lesion, thereby
allowing for lesion mapping to be performed within the ICE
image. Lesion size measured using intracardiac ME was well-
correlated with lesion volume as assessed by gross pathology.
We have also demonstrated the initial feasibility of detecting
gaps between lesions using our technique.

Strain estimated using ME can be used to provide a real-
time mechanical characterization of the target region of abla-
tion procedures and the surrounding tissue. Before ablation,

Fig. 6.
the creation of two lesions containing a 1.5-cm gap in between. Cumulative
end-systolic strain is shown (A) before ablation, (B) 5 min after the creation
of the first lesion, and (C) 5 min after the creation of the second lesion.
(D) Surface image of the lesions obtained in vivo and (E) and (F) result of
TTC staining of the excised lesions. Epicardial surface is towards the top
in (E) and (F). Axes units in centimeter.

End-systolic strain distribution obtained in the canine LV after

cardiac strain is consistently positive throughout the septal
and lateral walls, corresponding to the mechanical contraction
and thickening that occur throughout systole. As shown in
Figs. 4-7, cardiac strain exhibits significant and localized
changes following ablation, while remote regions remain rel-
atively unchanged. The magnitude of the strains within each
of the lesions is relatively close to zero (between —3% and
3% strain), which is reflective of the increase in stiffness
experienced by the tissue following ablation. Proper selection
of a threshold to distinguish healthy tissue from ablated tissue
is the subject of ongoing study. However, it is clear from the
Figs. 4-7 that healthy myocardium consistently experiences
> 5% cumulative strain at end systole. Because the mechanical
stress experienced by the tissue is unknown, direct mapping of
the tissue modulus cannot be obtained. Rather, intracardiac ME
aims to use the relative change in end-systolic change expe-
rienced by the tissue in real time to identify the formation of
localized increases in stiffness indicative of lesion formation.

The widespread use of echocardiography in interventional
cardiology is in part related to its low cost, ease of use, porta-
bility, and safety. Echocardiographic techniques to provide
lesion mapping capabilities have been the topic of several
reports in the literature. Unlike radiation force-based tech-
niques, ME exploits the natural contraction of the myocardium
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Fig. 7. End-systolic strain distribution obtained in the canine LV after
the creation of two lesions containing a 4-cm gap in between. Cumulative
end-systolic strain is shown (A) before ablation, (B) 5 min after the creation
of the first lesion, and (C) 5 min after the creation of the second lesion.
(D) Surface image of the lesions obtained in vivo and (E) and (F) result of
TTC staining of the excised lesions. Epicardial surface is towards the top in
(E) and (F). Axes units in centimeter.

place of a push beam, rendering direct stiffness mapping
more challenging since the tissue stress is unknown. However,
ME enjoys other advantages related to the absence of the
push beam, namely, high-depth penetration and large field
of view. Since ME is not limited by the penetration depth
and location of the acoustic push beam, it enables lesion
mapping throughout the entire view of the heart within a single
cardiac cycle. Furthermore, the location of the lesion does not
need to be precisely known before imaging, as long as it is
capable of being captured within the ICE view. This may be
especially important when imaging multiple lesions or lesion
lines, as the transmission settings and ICE view need not be
adjusted depending on the location of the ablation site within
the image.

Using a diverging beam acquisition, we have achieved an
imaging frame rate of 600 Hz to increase the precision of the
strain estimation performed by normalized cross correlation.
It is well-established that increasing the frame rate is beneficial
for axial strain estimation by way of decreasing the interframe
axial strains [25], [26]. However, standard diverging beam
acquisitions do suffer a tradeoff in spatial resolution, partic-
ularly in the lateral direction [33]. Methods such as coherent
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Fig. 8. Correlation between lesion area measured using intracardiac ME and
lesion volume assessed by histology.

spatial compounding could be used to increase the spatial
resolution in the lateral direction while still maintaining a high
frame rate [33], [34]. Future studies should aim to explore the
application of coherent compounding to intracardiac imaging
and to further characterize the resolution of lesion detection
using ME.

As intracardiac ME moves toward implementation of
GPU-accelerated hardware, it is expected that fully real-time
processing of the end-systolic strain image during the proce-
dure will be feasible. As of now, the processing of the strain
estimation pipeline can be performed at >200 Hz; however,
fully automated processing is currently impeded by myocardial
segmentation, which was performed manually in this paper.
Another advantage of intracardiac ME is the fact that the
strain estimation processing can be easily extended to 3-D.
The use of 3-D imaging would increase the field of view
for lesion mapping and eliminate any alignment ambiguities
that exist as a result of the imaging plane. Recently, we have
demonstrated ex vivo and in vivo lesion detection using a
2-D matrix array [35], [36]. Intracardiac systems with
2-D matrix array probes have also recently been developed
to enable volumetric intracardiac imaging [37], [38].

V. CONCLUSION

The results of this paper support the use of ME to monitor
the formation and assess the size of ablation lesions in vivo.
As expected, the presence of an ablation lesion within the
myocardium leads to decreased end-systolic cumulative strain
measured using intracardiac ME. Lesion size assessed using
ME is well-correlated with the excised lesion size measured in
histology. Furthermore, this paper has demonstrated that gaps
between lesions can be detected using this technique. Since
ICE imaging already plays an important role in conventional
clinical practice during RF ablation procedures, use of imaging
techniques such as ME may serve to augment the role of ICE
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during ablation procedures and provide a means for lesion
visualization, currently absent from the standard of care. The
lesion mapping capabilities of ME may serve to increase the
success rates of ablation procedures by allowing assessment
of the size, spacing, and depth of lesions in real-time during
the procedure.
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