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Abstract— Standard Electromechanical Wave Imaging
isochrone generation relies on manual selection of zero-
crossing (ZC) locations on incremental strain curves for
a number of pixels in the segmented myocardium for
each echocardiographic view and patient. When consid-
ering large populations, this becomes a time-consuming
process, that can be limited by inter-observer variability
and operator bias. In this study, we developed and op-
timized an automated ZC selection algorithm, towards a
faster more robust isochrone generation approach. The
algorithm either relies on heuristic-based baselines or ma-
chine learning classifiers. Manually generated isochrones,
previously validated against 3D intracardiac mapping, were
considered as ground truth during training and perfor-
mance evaluation steps. The machine learning models ap-
plied herein for the first time were: i) logistic regression; ii)
support vector machine (SVM); and iii) Random Forest. The
SVM and Random Forest classifiers successfully identi-
fied accessory pathways in Wolff-Parkinson-White patients,
characterized sinus rhythm in humans, and localized the
pacing electrode location in left ventricular paced canines
on the resulting isochrones. Nevertheless, the best per-
forming classifier was proven to be Random Forest with
a precision rising from 89.5% to 97%, obtained with the
voting approach that sets a probability threshold upon ZC
candidate selection. Furthermore, the predictivity was not
dependent on the type of testing dataset it was applied to,
contrary to SVM that exhibited a 5% drop in precision on the
canine testing dataset. Finally, these findings indicate that a
machine learning approach can reduce user variability and
considerably decrease the durations required for isochrone
generation, while preserving accurate activation patterns.

Index Terms— Automated isochrone generation, Elec-
tromechanical Wave Imaging, machine learning, Random
Forest classifier, zero-crossing selection.

I. INTRODUCTION

HEART disease stands as the leading cause of mortality
and morbidity worldwide, accounting for 30% of all

deaths [1], [2]. By 2030, the number of fatalities are expected
to increase to over 24 million a year globally [3], [4]. In ad-
dition, cardiovascular disease poses a severe economic burden
and is projected to cost the U.S. healthcare system more than
$800 million yearly by 2030 [5], [6]. Early detection of cardiac
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conduction malfunctions such as arrhythmias would definitely
help reduce the burden cardiovascular diseases have on public
health and overcome the current clinical challenges [7], [8],
[9]. The imaging techniques currently available to clinicians
for cardiac activation sequence mapping are invasive, ionizing,
time-consuming and costly [10], [11], [12]. Thus, there is
an undeniable, urgent need for a non-invasive and reliable
imaging tool, which could play a crucial role in the early
diagnosis of conduction diseases and allow physicians to
choose the best course of action [13], [14].

Echocardiography-based imaging techniques are low-cost,
non-invasive, and do not require the use of potentially harmful
ionizing radiation [15]. Ultrasound is therefore a highly desir-
able imaging modality from a patient perspective. It enables
visualizing the mechanics and measuring the dynamics of
the heart through the cardiac cycle, yielding diagnostic and
prognostic information [16]. Furthermore, the portability and
ease-of-use of ultrasound systems have led to widespread
adoption among cardiologists, establishing ultrasound as the
most frequently used modality in clinical cardiology [17].

Electromechanical Wave Imaging (EWI) is a high frame-
rate ultrasound-based functional modality that can non-
invasively map the electromechanical activation of the heart,
i.e., the transient deformations immediately following the
electrical activation, estimated in the time-domain on the
radiofrequency signals in 1D [18], [19], [20]. The type of
infinitesimal strain measured, whether longitudinal or radial,
does not hinder the activation map generation process. In fact,
since EWI is an angle independent technique, the only key
factor is the location of the sign change of this strain, surrogate
for the electrical activation timing [30]. Nonetheless, there is
room for potential improvements in the activation map genera-
tion process at different steps of the EWI processing pipeline:
from the high frame-rate ultrasound acquisition sequence itself
[15], [21], to the beamforming algorithm [22]- [25], the type
of displacement and strain estimators [26], [27], or even at
the final processing step of zero-crossing (ZC) selection on
the incremental strain curves [28], [29]. In this paper, we will
focus exclusively on enhancing and accelerating that last ZC
selection task.

In previous clinical studies from our group [31], [32], we
demonstrated that in conjunction with catheter-based elec-
troanatomical mapping and 12-lead electrocardiogram (ECG),
EWI could be a viable assisting tool for non-invasive diag-
nosis, treatment-planning and monitoring of ventricular and
atrial arrhythmias in the clinic. Nevertheless, as explained in
these papers, standard isochrone generation in the past relied
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on manual selection of the ZC locations on the incremental
axial strain curves for about 150 pixels in the segmented
myocardium mask for each echocardiographic view and each
patient. When considering large patient populations, this can
become a time-consuming process. Our group had introduced
a semi-automated algorithm, used previously in the study by
Bunting et al. [33], to automatically identify and select the
ZCs corresponding to the electromechanical activation for each
point in the tissue. However, this heuristic algorithm relied
on hard thresholding and empirical conditions that were not
further optimized nor validated against manually generated
isochrones in other EWI studies. Improving and accelerating
the isochrone generation process would bring EWI one step
closer to integration in the clinic.

Due to the plethora of images typically acquired from
patients in echocardiography (thousands per second), machine
learning (ML) and deep learning have gained a lot of interest
in the ultrasound field over the past few years [34], not only for
i) image reconstruction and beamforming [35], [36] with the
ADMIRE model among others [37], [38]; but also for ii) tumor
detection [39]; and iii) segmentation of echocardiographic
views with neural networks [40], [41]. ML has also been
applied to myocardial strain estimates derived from strain rate
imaging by Tissue Doppler or Speckle Tracking Echocardio-
graphy [42]- [44] for various applications: quality assurance
for reliability assessment [45], [46], strain curve classification
into physiological or artifactual categories [47], as well as
extracting spatiotemporal characteristics of echocardiographic
deformation curves for infarct classification purposes [48].

In this study, we sought to improve some aspects of the
standard EWI ZC selection processing pipeline: reducing inter-
observer variability and possible bias of the manually gener-
ated isochrones, while also decreasing the time needed to gen-
erate the activation maps, towards real-time implementation.
To achieve this goal, we developed an automated zero-crossing
detection algorithm relying either on heuristic-based baselines
or machine learning classifiers. We then investigated how
training machine learning models to automatically generate
isochrones with manually selected zero-crossing features from
past validated cases could lead to more robust activation maps.
Finally, after optimization of the classifier, we determined what
was the most suitable supervised machine learning algorithm
resulting in a faster overall isochrone generation process,
while also preserving the accurate electromechanical activation
pattern from manual generation.

II. MATERIALS AND METHODS

A. Standard Electromechanical Wave Imaging

Electromechanical Wave Imaging relies on a 2-second high
frame-rate ultrasound sequence composed of a single diverging
wave at 2000 Hz, acquired in four standard echocardiographic
apical views on a Vantage 256 research scanner (Verasonics
Inc., Kirkland, WA, USA) with a 2.5 MHz phased-array
transducer (ATL P4-2, Philips, Andover, Massachusetts). The
displacement estimation is performed on the radiofrequency
signals from each element of the ultrasound probe with 1D
axial cross-correlation (10 wavelength window, 90% overlap)

[49], followed by a least-squares estimator to derive the axial
strains (5-mm kernel) [50].

The wavefront of the electromechanical activation is defined
as the time point at which the incremental strain value changes
from relaxation to contraction. In the apical views, since the
ultrasound beam is aligned with the ventricular myocardial
wall that is shortening during systole, this corresponds to a
positive-to-negative flip or downward ZC of the incremental
axial strain. For most strain curves, a single negative peak
exists during systole and in these cases, selection of the ZC
location is straightforward. However, incremental strain curves
sometimes exhibit more than one negative peak after the onset
of the QRS complex or p-wave, for the ventricular or atrial
isochrones respectively. In these instances, instead of one clear
ZC, multiple ZC candidates are identified.

Usually, in the standard EWI isochrone generation process,
the myocardium of interest is first segmented on the B-mode
image. For about 150 randomly chosen points in the segmented
mask, the operator manually selects on the incremental axial
strain curves the timing of first sign change after the QRS
onset for the ventricles, respectively p-wave onset for the atria.
A Delaunay triangulation–based cubic interpolation is then
applied to the 2D scattered activation time ZC values in order
to achieve a continuous isochrone pattern throughout the entire
myocardium mask grid. The activation timings in milliseconds
are finally color-coded on a 2D map or isochrone, with red
being early activation and blue late. Once the maps have
been generated in the four views, a 3D-rendering algorithm
automatically detects the longitudinal left ventricular (LV)
median axis on the four apical isochrones [51]. The multi-
2D views are then co-registered around that axis and linear
interpolation of the activation times is performed around the
circumference. This leads to 3D-rendered activation maps. The
full standard manual EWI isochrone generation processing
pipeline can take up to 90 minutes and runs in MATLAB.

Further details on the imaging sequence, beamforming,
standard EWI processing steps and associated parameters
can be found in previous publications from our group [30]-
[33]. Furthermore, to address the cases with multiple ZCs
and choose the best candidate consistently without observer
bias from the standard manual approach, we developed the
automated isochrone generation algorithm described below.

B. Developing the automated algorithm

Prior to feature detection and ZC selection on the incremen-
tal axial strain curves, a search window was set to 200 ms
after the QRS origin picked on our single lead ECG, outside
of which we do not look for ZC candidates (vertical black
dotted line on Fig.1). This assumption is based on the fact
that we expect the ventricles to have fully activated within
that 200 ms range, because in this study we included healthy
subjects with no history of ischemia, infarct or other co-
morbidities, as explained in the ensuing ground truth datasets
description subsection. In the case of pathological cases, the
search window would need to be extended to a longer time
interval to make sure we aren’t missing any ZC candidate in
the abnormal myocardial tissue. Zero-crossing detection and
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feature extraction from strain curves have been used by other
groups for various ultrasound applications [52], [53].

In this study, we are interested in automatically collecting
the following features, as illustrated on Figure 1:

1) (Xi,Yi): spatial coordinates of each point within the
segmented myocardial mask, with i ∈ [1 : k]; e.g. a
limit of 150 pixels (k = 150) can be applied when
comparing directly the automated results to manually
generated isochrones.

2) tZCi,n
: all positive to negative ZC time-points (activa-

tion timings in ms), with n index of the ZC (e.g., n = 1
if only single ZC possible or n = 2 on Fig.1).

3) slopeZC: slope of the strain curve at each ZC location
(red dotted tangent line on Fig.1).

4) εmax and εmin: maximum positive and minimum neg-
ative strain values surrounding each ZC.

5) tεmax and tεmin
: time-point locations of the maximum

and minimum strain values (in ms).

Fig. 1. Incremental strain curve and feature collection for a given pixel
P (X1, Y1) in the apical four-chamber view ventricular mask.

From here onward, we will refer to the points with single
ZC occurrences (n = 1) as “stable ZCs”, compared to “ZC
candidates” when multiple options are available (n > 1). In
the 35 ground truth datasets included in this study (section
II.D.), stable ZCs represented ≈ 40% of the cases, while ZC
candidates were present ≈ 60% of the time.

C. Defining heuristic-based automated approaches as a
reference baseline

Once the incremental axial strain curve features were
collected, we considered two heuristic-based automated ap-
proaches and compare the resulting isochrones for each one
of them to the manually generated ground truth maps. The
approaches were implemented as follows in MATLAB:

1) Naive approach: always select the first positive to nega-
tive ZC immediately following the QRS complex onset
and occurring within the 200 ms search window.

2) Rule-based approach: select the first positive to negative
ZC that satisfies the following empirical conditions:

εmin ≥ 20% min(εmin ∀i) (1)

| slopeZC | ≥ 20% max(| slopestrain curve |) (2)

These ZCs, defined based on conditions on the negative
ZC peak amplitude and the steepness of the strain curve
slope at the crossing, were previously introduced in [33]
and referred to as “clear” ZCs.

The second approach tries to mimic the observer’s reasoning
when there is more than one ZC candidate to choose from. In
fact, these two conditions (1) and (2) on the strain curve’s slope
at the location of the ZC and on the amplitude of the peak
negative strain are common biases experienced by operators
upon their manual ZC selection process.

D. Ground truth datasets
To be able to compare the performance of the different

automated approaches, we need to establish and confirm which
method yields the most accurate physiological ZCs, and if the
resulting isochrones preserve the accurate manually generated
activation pattern or maybe even outperform it. Towards that
goal, we have to test the algorithm on some well characterized
datasets. Manually generated isochrones can only be consid-
ered ground truth data if they have previously been validated
by electroanatomical mapping (EAM) [54].

First, we considered twenty-four (N=24) Wolff-Parkinson-
White (WPW) patients taken from our group’s pediatric
(14/24) and adult (10/24) clinical studies, [31] and [32],
respectively, all previously validated against intracardiac map-
ping prior to their ablation procedures. The patients had
ventricular pre-excitation, but were known to be otherwise
healthy with normal cardiac anatomy and function (e.g., no
ischemia as it could have an effect on the strain curves due
to tethering for instance or reduced strain amplitudes). We
also included five (N=5) human cases in sinus rhythm, from
patients post successful WPW ablation.

In addition, we included data from two prior open-chest
canine experiments [32] with EAM validation on the epicardial
surface of the LV using the clinical EnSite mapping system
(Abbott Medical, St. Paul, MN, USA). Contrary to patient
data, this allowed us to achieve exact LV wall co-registration
between the surface mapped and the wall portions being
imaged in the apical views. This was easily accomplished after
the thoracotomy by probing the epicardium with the mapping
catheter, ensuring visualization on the corresponding B-mode
before acquiring the views, and placing the associated labels
on the electroanatomic maps. One canine was paced at a single
antero-lateral LV location, while the other animal had 5 pacing
electrodes positioned across its LV anterior surface; leading to
a total of six (N=6) different LV-paced canine datasets.

TABLE I
PATIENT DEMOGRAPHICS IN GROUND TRUTH DATASETS

Wolff-Parkinson-White patients (N=24)
Gender Male n=13 (54%)

Female n=11 (46%)
Age (yrs) Range 7-67

Median 17

Patients in sinus rhythm (N=5)
Gender Male n=2 (40%)

Female n=3 (60%)
Age (yrs) Range 7-17

Median 12

Therefore, we ended up with a total of 35 datasets with
zero-crossings validated thanks to the manual selection ground
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truths: 35 cases x 4 apical views x 150 spatial points = 21 000
incremental strain curves. These 21 000 strain curves were all
annotated by a single expert.

All datasets were previously acquired with a Vantage 256
research scanner. The human subject study was conducted un-
der a protocol approved by the institutional review board (IRB)
of Columbia University and was carried out in accordance
with IRB guidelines and regulations. Informed consent was
obtained from all participants. In parallel, the animal study
protocol was approved by the Institutional Animal Care and
Use Committee (IACUC) at Columbia University, New York,
NY, USA, and was compliant with the Public Health Service
Policy on Humane Care and Use of Laboratory Animals.

E. Machine learning classification models

A supervised learning model was subsequently built to
classify the ZC candidates. Supervised learning consists of
building a model that approximates a function trained with
ground truth samples (i.e., labeled data). For each sample,
this learnt function takes features as an input, and returns a
value. In our case, we need a binary classifier that determines
whether a ZC candidate is the correct one. In order to do so,
we started by labelling the data: for a given pixel (Xi, Yi)
in the segmented myocardium mask, the ZC candidate with
the activation time tZCi,n

closest to the manually selected ZC
location was assigned the label = 1 (i.e., true location), while
the others tZCi,j with j 6= n were assigned the label = 0.
The feature engineering step was performed on the above-
mentioned ground truth datasets.

Pre-processing of the dataset is required prior to training
the classification model. On top of the automatically collected
numerical strain curve features listed above, we also included
the following categorical features: the apical view type the
strain curves were retrieved from (4-chamber, 3.5-chamber, 2-
chamber or 3-chamber view), as well as the type of acquisition
used (i.e., field of view depth and pixel resolution). The list of
all features is provided in Table II with a total of: 16 features
= 8 categorical features + 8 numerical features.

TABLE II
FEATURES USED FOR THE MACHINE LEARNING ALGORITHM

Categorical features Numerical features
1 Apical 4-chamber Xi coordinate
2 Apical 3.5-chamber Yi coordinate
3 Apical 2-chamber tZCi,n

ZC location
4 Apical 3-chamber slopeZC slope at ZC location
5 14-cm deep field of view εmax peak positive strain before ZC
6 20-cm deep field of view εmin peak negative strain after ZC
7 λ/16 pixel axial resolution tεmax peak location before ZC
8 λ/8 pixel axial resolution tεmin peak location after ZC

We then performed “one-hot encoding” on the categorical
features, which consists of converting categorical variables
into a binary form that can be provided as a feature to train
the ML algorithm. Finally, the last pre-processing step was to
standardize the numerical features in order to convert them
to a common scale with an average of zero and a standard
deviation of one. This was achieved with z-normalization:

(Xi, Yi) standardization was performed by patient and by view
for consistent distance measurement purposes across cases,
while the other numerical features were standardized across
patients prior to training.

The developed machine learning algorithm is a binary
classifier. For each P (Xi, Yi) with no stable ZC, the algorithm
has to vote for the best ZC candidate. Therefore, we want to
learn a function f that maps the features described above to
a probability p ∈ [0 : 1] of being a true ZC, and predict
that the candidate with the highest probability is indeed the
ZC, while the others are not. To find the most appropriate
algorithm, we tried three classic machine learning approaches:
Logistic Regression, Support Vector Machine (SVM) and
Random Forest. Logistic regression is a widely used statistical
generalized linear model, often chosen as a reference baseline
in ML, as it is simple and straightforward to implement [55].
The logistic regression classifier used herein relied on an
elastic net regularization, linearly combining L1 and L2 regu-
larization techniques on the regression coefficients included in
the penalty term of the loss function [56]. The corresponding
hyperparameter in this case is called the L1-ratio; being
equal to 1 if the penalty term is only an L1 regularization,
while equal to 0 if it’s only an L2 regularization (Table III).
Besides, SVM, also known as support vector networks, is
a supervised learning model used for classification, which
defines a hyperplane to divide the two categories [57]. The
SVM kernel defines what type of separation will be applied
between the classes and allows to find the optimal hyperplane
in a different dimensional space. Finally, Random Forest is
an ensemble learning method for classification that operates
by constructing a multitude of decision trees [58]. Random
Forest is known to be good for dealing with heterogeneous
features [59]. Each decision tree gives a predicted label to
the samples, and the Random Forest ends up assigning the
label that has the most votes out of all the decision trees.
All models were implemented in Python with the Scikit-
learn library to define the three classifiers and their associated
hyperparameters (Table III).

Furthermore, how did these models vote for the correct ZCs
for each P (Xi, Yi)? Two voting options were possible in order
to convert the probability values of the ZC candidates to binary
labels and determine the predicted labels for each candidate:

1) Always select the highest probability ZC candidate for
each pixel and assign it the label = 1:

argmax
n

(
p(tZCi,n

)
)
∀(Xi, Yi) (3)

2) Swipe through a set a probability thresholds to find the
best cutoff value: highest precision given a condition
set on the recall (also known as sensitivity or true
positive rate). Then, pick the best ZC candidate only
if its probability is higher than the cutoff threshold, and
assign it the label = 1:

argmax
n

(
p(tZCi,n

)
)

only if p(tZCi,n
) > pthres (4)

These approaches were evaluated on the previously de-
scribed and validated ground truth cases. Towards that goal,
we first split the 24 WPW datasets into a training set, and a
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TABLE III
MACHINE LEARNING MODELS, ASSOCIATED HYPERPARAMETERS AND LIST OF CORRESPONDING VALUES USED UPON ITERATIVE TUNING

ML model Hyperparameters Values used for iterative tuning
Logistic regression elastic net, L1-ratio [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
SVM kernel type ’linear’, ’poly’, ’rbf’, ’sigmoid’
Random Forest n estimators [20, 50, 100, 200, 300, 400, 500]

Poly = polynomial, rbf = radial basis function, n estimators = number of estimators or trees in the forest.

validation set with a 70/30 ratio: 16 patients for training (9614
labelled strain curves) vs 8 for evaluating the hyperparameters
(4453 strain curves). The hyperparameter tuning process was
iterative: we fitted a model on the training set with a set of
given hyperparameters, and evaluated its performance on the
validation set. The approach taken was that of a grid search,
where we iteratively swept through all possible combinations
of hyperparameters for a given model within ranges we had
set (Table III). We compared the performance of the different
models based on evaluation metrics described in more details
in the next paragraph, computed on the validation set. Once we
found a machine learning algorithm and a set of hyperparame-
ters that yielded good results on the validation set, we refitted
the model with these settings on the whole dataset constituted
of both the training and validation samples. This step allowed
for a larger sample size in order to fit, hopefully, a better
model. Finally, we tested the subsequent model on a held-
out set called the test set. The latter included the remaining
11 ground truth datasets not used so far: 5 human sinus
rhythm subjects and 6 LV paced canines. We used this test set
only once to avoid leaking information to our hyperparameter
tuning process and damaging the generalizability of our model
by overfitting it to the test set. The resulting testing metrics are
the true performance evaluation of our model, since they were
obtained on a dataset that was neither used to fit the model,
nor used to select hyperparameters (Table IV, b-c). Although
generalizability is a central problem in machine learning, we
can build some confidence regarding future performance of our
predictive models by using different test datasets that illustrate
various realistic tasks, such as a different set of patients, or
transferability of our model’s predictivity to canine subjects.

F. Evaluation metrics
In order to evaluate the performance of the automated ma-

chine learning algorithms, the metrics used were the following:

precision =
TP

TP + FP
and recall =

TP

TP + FN

with TP = true positive, FP = false positive and FN = false
negative. In our scenario, the precision represents what portion
of our prediction is true, while the recall corresponds to how
many true ZCs did we find overall.

III. RESULTS

Multi-2D isochrones on an illustrative example correspond-
ing to the canine testing dataset are shown in Figure 2 for
the ground truth manual zero-crossings, as well as for the two
heuristic-based automated approaches. The anterior LV paced

canine case satisfyingly exhibited a single early activated
region on the ground truth manual isochrones, displayed in red
on the LV anterior wall of the apical 2-chamber view (Fig.2-a).
While the first occurring ZCs approach did catch the pacing
electrode’s (earliest activated) region, it also displayed several
other early activated areas, even on the right ventricular (RV)
free wall very distal from the location of the pacing electrode
(Fig.2-b). Furthermore, the isochrones generated with the neg-
ative peak amplitude and slope conditions (1) and (2) were less
noisy and more similar to the manual ground truth in terms of
predominantly late activated blue color and overall activation
pattern, despite missing the pacing electrode’s location on the
anterior wall of the apical two-chamber view (Fig.2-c). None
of the two heuristic-based automated approaches were very
convincing.

Regarding the machine learning classification models, the
set of tuned hyperparameters that was found to yield the best
results (highest recall or sensitivity) on the validation set was
the following: logistic regression, elastic net L1-ratio = 0.5;
SVM, kernel = radial basis function; and Random Forest, n
estimators = 200. The precision-recall curves for the three
models (logistic regression in red, SVM in blue and Random
Forest in green) were evaluated on the validation, human test
and canine test datasets, and are shown in Figure 3. SVM
and Random Forest are shown to significantly outperform
logistic regression on all three datasets, while the two former
performing similarly and not falling below 88% precision even
in the worst case. Additionally, the stars and values overlaid
onto the curves represent the performances for the different
voting approaches and threshold scenarios used to generate the
EWI isochrones throughout this paper, as explained in details
in Table IV. More specifically, we decided to take a closer
look at two particular recall values: 70% and 40%. These
recall percentages were selected based upon our assessment of
the precision-recall curves for each machine learning model
and each dataset. The two values were subsequently set as
accepted thresholds that balanced between precision and recall
rates, and generated isochrones with the best quality tradeoff.
Given that we initially started with about 150 ground truth
pixels P (Xi, Yi) for each apical view, a 70% recall would
mean having at least 100 points with manually selected ZCs
to choose from when generating our automated isochrones.
However, setting a 40% recall (e.g., 60 pixels) would lead
to spatial under sampling within the segmented myocardium
mask and thus, drastically impact the isochrone activation
pattern, which would then mostly result from interpolation
and not actual selected activation times. Nevertheless, if we
collect the features on about 2500 pixels per view, we would

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2021.3074808

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 20,2021 at 17:14:48 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3074808, IEEE
Transactions on Medical Imaging

6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

Fig. 2. Multi-2D isochrones generated with different heuristic-based automated approaches on the example of an anterior LV paced canine
taken from the testing dataset and compared to the manually generated ground truth isochrones. The multi-2D isochrones are shown in the four
apical views (from left to right: 4, 3.5, 2 and 3-chamber view) for: a) Manual ground truth; b) Naive heuristic-based automated approach selecting
always the first occurring ZCs; c) Rule-based automated approach selecting the ZCs satisfying conditions (1) and (2). ANT=anterior; LAT=lateral,
POST=posterior; SEPT=septum.

start with a larger pool of axial incremental strain curves. In
fact, once the models have been trained, the ground truth and
labelled ZCs are not required on all the points to perform the
testing on new data. Therefore, even with a low recall of 40%,
we would still end up with 1000 pixels, which corresponds to
an order of magnitude higher than our current standard manual
EWI isochrone generation process.

Quantitatively, Table IV details the ML models’ perfor-
mance evaluated on the entire validation dataset (Table IV-
a), as well as on both test datasets: human (Table IV-b) and
canine (Table IV-c). The two different voting options for the
multiple ZC candidates are shown: the highest probability
approach always voting for a ZC candidate at all times (3), and
the probability threshold option only voting for the best ZC
candidate that satisfies the probability threshold condition (4).
It is worth noting that the precision and recall values for the
first voting approach are always equal to one another. This is
due to the fact that the highest probability models always make
a ZC candidate selection for each pixel. In that case, because
of that specific voting process FN=FP and thus, the evaluation
metrics formulas written above end up being the same. On the
other hand, for the second ZC voting approach (4), the table
displays the best precision performance for two scenarios: i)
when satisfying a recall > 70%, and ii) when satisfying a recall
> 40% respectively. Lastly, the corresponding probability

thresholds pthres are explicitly listed in the last column for
each case. As expected with the precision-recall tradeoff, when
the recall decreases from 70% to 40%, the precision improves
by at least 2% and up to 5% for both SVM and Random Forest
models depending on the dataset of interest. In addition, even
though SVM initially performed very similarly to Random
Forest in terms of precision, on the validation dataset as well
as on the human testing dataset, SVM’s precision exhibited a
5% drop on the canine testing set (Table IV-c). Meanwhile,
Random Forest remained stable and barely witnessed any
change in precision when applying the model to canine data.

Figure 4 illustrates the 3D-rendered isochrone results for
the heuristic-based and ML-based automated approaches on
the example of an antero-lateral LV paced canine, retrieved
from the test dataset. The isochrone patterns of the heuristic
naive baseline selecting the first ZCs and logistic regression
automated approaches look very similar to one another (Fig.4-
b, d), but are far from comparable to the manual ground truth
result (Fig.4-a). Besides, the isochrone resulting from the rule-
based heuristic approach does have a later blue activation pat-
tern overall closer to the ground truth, despite missing the early
activated region of interest from the LV pacing electrode in the
antero-lateral region (Fig.4-c). Meanwhile, SVM and Random
Forest (Fig.4-e, f, top row) clearly outperformed the three other
approaches and had promising qualitative performance, despite
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Fig. 3. Precision-recall curves for the three ML models (Left column: logistic regression in red, Center: SVM in blue, and Right column: Random
Forest in green). The curves are displayed for performances evaluated on: a) the human validation dataset; b) the human test dataset; and c) the
canine test dataset. The ML models performance are shown for their tuned hyperparameters: elastic net L1-ratio = 0.5; kernel = radial basis function
and n estimators = 200.

revealing discontinuities in the activation pattern anteriorly
compared to the manually generated isochrone. The recall here
was maximal, since the models did not discard any pixel upon
voting for the ZC candidates (3). In order to further increase
the precision, we used the second voting option applying a
probability threshold to the ZC candidates (4) and making sure
the recall remained > 70% (Fig.4, middle row). In that case,
the best performing algorithm was the Random Forest model.
The latter is emphasized here by the blue dashed box. This
was indeed previously quantified and confirmed by the higher

performance evaluation metrics (Table IV). Furthermore, when
setting the voting condition such that the recall was higher
than 40%, while simultaneously considering a larger amount
of pixels (P (Xi, Yi) with i ∈ [1 : 2500]) not previously used
in the initial ground truth manual ZC selection (Fig.4-e, f,
bottom row), the Random Forest precision increased even
more. In fact, the antero-lateral LV pacing spot displayed in
red became more localized in the longitudinal direction and
did not spread towards the base anymore. Thus, the overall
optimal automated algorithm that allowed the most successful
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TABLE IV
MACHINE LEARNING MODELS PERFORMANCE EVALUATION

a) Highest probability ZC Probability threshold on ZCs
Precision Recall Precision Recall pthres

Logistic regression 71.19 % 71.19 % 71.20 % 71.17 % 0.254
76.81 % 40.02 % 0.643

SVM 89.51 % 89.51 % 93.14 % 70.18 % 0.767
97.80 % 42.02 % 0.938

Random Forest 89.58 % 89.58 % 92.69 % 70.31 % 0.720
97.86 % 41.05 % 0.915

b) Highest probability ZC Probability threshold on ZCs
Precision Recall Precision Recall pthres

Logistic regression 57.16 % 57.16 % 57.16 % 57.16 % 0.200
57.16 % 57.16 % 0.200

SVM 88.41 % 88.41 % 93.07 % 70.12 % 0.775
96.61 % 40.18 % 0.937

Random Forest 89.53 % 89.53 % 92.74 % 70.06 % 0.721
97.52 % 40.09 % 0.903

c) Highest probability ZC Probability threshold on ZCs
Precision Recall Precision Recall pthres

Logistic regression 61.67 % 61.67 % 61.67 % 61.67 % 0.221
61.91 % 40.43 % 0.576

SVM 88.26 % 88.26 % 88.68 % 70.03 % 0.698
91.12 % 40.06 % 0.919

Random Forest 90.59 % 90.59 % 92.61 % 70.05% 0.704
97.13 % 40.01 % 0.912

Performance evaluated on: a) the validation dataset; b) the human test dataset; and c) the canine test dataset.
The three models display the performance for their tuned hyperparameters: L1-ratio = 0.5; kernel = radial basis function and n estimators = 200.

localization of the antero-lateral LV pacing spot, as validated
by the manual isochrones, is outlined by the green dashed
box (Random Forest, recall > 40% and 2500 pixels per
view). Nevertheless, minor differences in the activation pattern
remain visible at the basal level compared to the manual
ground truth isochrone. These discrepancies are caused by
the ZC selection process on the apical 3.5-chamber view for
the Random Forest classifier when a probability threshold
is applied to the ZC candidates upon voting, and further
emphasized by the subsequent interpolation of the activation
times in 2D. Representative strain curves are displayed on
Figure 5 for four points located in the antero-lateral LV wall of
the 3.5-chamber isochrone mask. The Random Forest voting
approach with the recall conditions (both > 70% and > 40%)
discarded some ZC points of lower confidence. This lead to a
reduced spatial sampling in that particular wall region, which
resulted here namely in P2 falling outside of the interpolated
isochrone mask at the base and therefore, explains the minor
divergence from the manual isochrone.

Moreover, the comprehensive overview of the corresponding
multi-2D EWI isochrone slices in all four apical views prior
to 3D-rendering for the SVM and Random Forest models are
included in Supplemental Figure 1, as well as the original
ground truth manual 2D isochrones for that same LV paced
canine. The 2D isochrones clearly demonstrate the improve-
ments resulting from the second voting approach with the
probability threshold, as well as the progress made when the
model was applied to a larger number of pixels. The dashed
circles outline where the precision was recovered when the
recall decreased. Figure 6 and Supplemental Figure 2 further

clarify the precision-recall tradeoff on this particular canine
example. The pixel density is mapped spatially in each of the
four apical views for all ZC voting scenarios (Supplemental
Figure 2). This illustrates how the Random Forest classifier
has a lower confidence in particular myocardial wall regions,
but doesn’t risk voting for a ZC candidate in these regions and
would rather keep the precision metric higher than SVM by
discarding more lower probability points, as previously shown
and explained with P2 in Figure 5. More specifically, Figure 6
displays representative examples of incremental strain curves
for 4 points in the segmented myocardium mask within the RV
free wall of the 3.5-chamber view this time. The presence of
a second earlier ZC candidate on three out of the four curves,
different from the manually selected ground truth ZC, informs
the change in the Random Forest model’s behavior between
the voting approaches in the recovered precision region with
the recall conditions (green dashed circle).

Finally, other examples of automated isochrones compared
to manual ground truth are given in Fig.7 and Supplemental
Figure 3, this time on a patient in sinus rhythm taken from the
human testing dataset and a left lateral WPW case taken from
the validation dataset, respectively. Once more, the Random
Forest algorithm performed the best, clearly depicting the
normal early activation of the atrioventricular node at the basal
septum and the location of the accessory pathway on the left
lateral wall of the LV.

IV. DISCUSSION

In this optimization study, we developed an automated zero-
crossing detection algorithm to generate EWI isochrones in a
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Fig. 4. 3D-rendered isochrones generated with different automated approaches on the example of an antero-lateral LV paced canine taken
from the testing dataset compared to the manually generated isochrone. The 3D-rendered isochrones are shown for: a) Manual ground truth; b)
Naive heuristic-based automated approach selecting always the first occurring ZCs; c) Rule-based heuristic automated approach selecting the ZCs
satisfying conditions (1) and (2); d) ML model with logistic regression classifier; e) ML model with SVM classifier; and f) ML model with Random
Forest classifier. The corresponding EnSite electroanatomic map (EAM) is included for a limited epicardial surface of the anterior LV, accessible
with the mapping catheter in the chest cavity during the canine experiment. The middle row for (d-f) corresponds to the ML models results with
the 2nd voting approach: probability threshold applied to the ZC candidates (4) and satisfying a recall > 70%, while the bottom row for (e-f)
sets the condition to a recall > 40%. Another key difference for the very last row is the considerably larger amount of pixels the models were
applied on (P (Xi, Yi) with i ∈ [1 : 2500]), not previously used in the initial ground truth manual ZC selection. The ML model-based automated
algorithms generated the isochrones with their tuned hyperparameters: elastic net L1-ratio = 0.5; kernel = radial basis function and n estimators =
200. ANT=anterior; LAT=lateral, POST=posterior; SEPT=septum.

faster and more robust way, with no inter-observer variability.
This study also reported the use of machine learning models
for the first time for automatically selecting the best ZC
candidates on axial incremental strain curves in WPW patients,
sinus rhythm humans and LV paced canines. The three ML
models (logistic regression, SVM and Random Forest) were
trained with manually selected zero-crossing features from
past validated cases, therefore, considered as ground truth.

First, we evaluated the models performance with precision-
recall curves on the validation and testing datasets (Figure 3).
Both SVM and Random Forest models clearly outperformed
logistic regression on all three datasets. In fact, the precision of
the logistic regression classifier collapsed very quickly below
65% on the testing datasets, as illustrated on the middle and
bottom rows precision-recall curves in red. Table IV further
described the models’ performance for the different voting ap-
proaches and probability threshold scenarios used to generate
the EWI isochrones in this study. The logistic regression model
could not yield a respective recall higher than 57.2% and
61.7% in the human and canine test datasets, despite applying
the probability threshold to the ZC candidates with the voting
approach. This led once more to situations where the precision
was equal to the recall, due to the maximum recall cut-off.

Additionally, even though SVM initially performed as well
as Random Forest in terms of precision on the validation and

human testing datasets, it ended up not being as generalizable
nor transferable to other types of datasets, like in the canine
example for which it exhibited a 5% drop in precision (Table
IV). We can assume the SVM model was probably more
overfitted to the training and validation human datasets. Mean-
while, Random Forest showed robustness and its predictivity
was not impacted by the type of dataset. This allowed us
to build confidence about future performance of the Random
Forest model with respect to dealing with potential data it
has not yet been exposed to. Thus, the Random Forest model
with 200 estimators or trees was hereby proven to have the
best performances overall no matter the dataset it was applied
to. Setting a probability threshold upon ZC candidate voting
improved the precision from 89.5% to 92.7%, and went as
high as 97.5% on the testing datasets at the expense of a
significantly lower recall however (40%).

Furthermore, automated operator independent 3D-rendered
isochrone generation approaches such as SVM and Random
Forest were shown capable of successfully identifying the ac-
cessory pathway in WPW patients, the normal early activated
basal septum close to the atrioventricular node in sinus rhythm
patients and the pacing electrode location in LV paced canines
(Fig.4, Fig.5, Fig.7 and Supplemental Figures 1 & 3). The total
processing time needed to generate the resulting 3D-rendered
EWI activation maps decreased from the usual 90 minutes for
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Fig. 5. Incremental axial strain curves for 4 points in the LV antero-lateral wall of the apical 3.5-chamber view isochrone from the LV paced
canine (Fig.4). The circled region over the myocardial isochrone mask outlines the basal region of the antero-lateral wall which displayed a few
discrepancies on the corresponding 3D-rendered isochrones (dashed boxes on Fig.4-f) compared to the manually generated one (Fig.4-a). This
region also corresponds to the area of lower recall circled in red on Supplemental Figure 1 for the Random Forest model with the voting approaches
that apply a probability threshold to the candidates, and consequently matches the area of lower spatial sampling in Supplemental Figure 2. The
different zero-crossing candidates are displayed in red on the strain curves for the given 4 points (Pi) and the chosen candidates are listed in the
Table at the bottom for each of the manual selection and three Random Forest approaches (no voting threshold, recall > 70% and recall > 40%).
The Random Forest classifier selected a different ZC candidate than the manual ground truth for P3 and discarded point P2 altogether due to low
voting confidence in the case of both approaches with the recall conditions.

the standard manual approach to less than 5 minutes per patient
with the machine learning based automated approaches. More
particularly, the times required just for the ZC selection step
itself are listed in Table V for the three classifiers on the entire
human and canine test datasets.

Besides, Random Forest was deemed to have the best perfor-
mance visually with the second voting approach while setting
the condition on the recall evaluation metric (Fig.4-f and Fig.7-
f), outperforming SVM with the same probability threshold
voting approach (Fig.4-e and Fig.7-e). These findings were
all the more true when considering a larger amount of pixels
(2500 points) per apical view, not used in the initial ground
truth manual ZC selection. Even if the incremental axial strain
curves and associated features were no longer labeled, as they
were not previously manually annotated, this allowed us to go
as low as 40% for the recall value. In fact, at this point we

were interested in the highest possible precision, no matter
the recall. The resulting EWI isochrone activation patterns
were very satisfying. Despite discarding about 60% of the
pixels per view and only making ZC predictions on 1000
points out of the 2500 (still more than four times the amount
of pixels currently used for the standard manually generated
isochrones), the precision rose above 97%.

TABLE V
PROCESSING TIME REQUIRED FOR ZERO-CROSSING SELECTION

ML model Human test dataset Canine test dataset
Logistic regression 1.6 seconds 1.9 seconds
SVM 43.9 seconds 43.2 seconds
Random Forest 40.9 seconds 94.5 seconds

The processing times include both the fitting and ZC predicion times for each
machine learning model on the entire datasets of annotated strain curves.
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Fig. 6. Incremental axial strain curves for 4 points in the RV free wall (black dashed outline) from the apical 3.5-chamber view isochrone of the
antero-lateral LV paced canine (Fig.4 and Fig.5). The different zero-crossing candidates are displayed in red on the curves. The circled region over
the myocardial mask corresponds to the area of recovered precision from Supplemental Figure 1 for the Random Forest model with the 2nd voting
approach: probability threshold applied to the ZC candidates while satisfying a given set recall value.

Fig. 7. 3D-rendered isochrones generated with different automated approaches on the example of a patient in sinus rhythm taken from the
human testing dataset compared to the manually generated isochrone. The 3D-rendered isochrones are shown for: a) Manual ground truth; b)
Naive heuristic-based automated approach selecting always the first occurring ZCs; c) Rule-based heuristic automated approach selecting the ZCs
satisfying conditions (1) and (2); d) ML model with logistic regression classifier; e) ML model with SVM classifier; and f) ML model with Random
Forest classifier. The middle row for (d-f) corresponds to the ML models results with the 2nd voting approach: probability threshold applied to the
ZC candidates (4) and satisfying a recall > 70%, while the bottom row for (e-f) sets the condition to a recall > 40%. Another key difference for the
very last row is the considerably larger amount of pixels the models were applied on (P (Xi, Yi) with i ∈ [1 : 2500]), not previously used in the
initial ground truth manual ZC selection. The ML model-based automated algorithms generated the isochrones with their tuned hyperparameters:
elastic net L1-ratio = 0.5; kernel = radial basis function and n estimators = 200. ANT=anterior; LAT=lateral, POST=posterior; SEPT=septum.

Lastly, since the electromechanical activation constitutes a
wavefront, it is expected to propagate continuously. Therefore,
we can assume when having several ZC candidates to choose
from, that the correct and physiological approach would be
to select the ZC that gives the smoothest transition in the

activation gradient in order to decrease the amount of sudden
“jumps” or discontinuities in activation times. The incremental
strain curves, multi-2D isochrones and corresponding pixel
locations in the segmented masks, shown in Figure 6, Supple-
mental Figures 1 and 2 respectively, highlight that particular

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2021.3074808

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 20,2021 at 17:14:48 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3074808, IEEE
Transactions on Medical Imaging

12 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

interesting behavior the Random Forest model adopted when
faced with such a scenario. Three out of the four curves
displayed the presence of a second earlier ZC candidate,
different from the manually selected ground truth ZC (Fig.
6). An operator manually generating this 3.5-chamber view
isochrone would most probably have applied a “nearest neigh-
bor” approach: inferring which ZC candidate was the correct
physiological one by looking at the nearest single stable ZC
and choosing accordingly between the multiple candidates in
the neighboring points. It seems the Random Forest classifier
intrinsically applied a similar reasoning. This could also be
justified by the highest amplitude of the second ZC negative
peak strain. In fact, as previously mentioned when introducing
the heuristic-based automated isochrone generation approaches
in the Methods, applying a condition on the negative peak
amplitude is a common bias experienced by the operator
upon his manual ZC selection process. Thus, it is possible
that the training datasets included information regarding one
zero-crossing candidate disappearing while another one ap-
pears with higher negative peak strain amplitudes, and the
ML model might have been predisposed to identifying such
relationships because they were embedded in the training
features. Investigating and further characterizing the effect of
single versus multi-expert ground truth annotation on training
bias is a topic of ongoing and future investigation in our
group. Moreover, future studies should consider implementing
a nearest neighbour with smooth activation gradient method as
a more sophisticated heuristic-based automated approach and
comparing the results to machine learning approaches.

Nevertheless, there were a few limitations to this study.
The automated algorithms were only applied to ventricular
isochrone generation with positive-to-negative ZCs. Upward
negative-to-positive ZCs for other types of views such as
parasternal long-axis or atrial isochrones were not considered
in the training process. Including negative-to-positive ZCs
might help remove discontinuities in the isochrone activation
patterns at the apex due to complex fiber orientation in that
region. In addition, the ground truth datasets only included
sinus rhythm cases or WPW patients that were otherwise
known to be healthy with no other co-morbidities. These
datasets also did not include other types of cardiac arrythmias.
Besides, the limited number of cases presented in this paper
might raise some concern on repeatability of the machine
learning approaches. The present study examines automated
EWI isochrone generation with machine learning for the first
time and is an initial evaluation and optimization of the best
classifier for zero-crossing selection. Future investigations still
need to be conducted to further refine the Random Forest
classifier and assess its reproducibility, by adding for instance
more categorical features (e.g., type of cardiac rhythm) as
inputs to the ML model to potentially improve its robustness
and transferability even more. Considering the totality of the
points contained in the segmented myocardium mask in each
view: (Xi, Yi) with i ∈ [1 : k] and k > 40000, instead of
a subset of pixels with k ≤ 2500, could also improve the
isochrone outcomes at low recall values and decrease the
suboptimal portion of the results.

In the future, we could also explore the use of a different

learning approach, e.g., semi-supervised learning to increase
the number of labeled samples included in the training dataset.
In addition, we could envision using a deep learning approach
with no manual feature engineering step required, where the
model would extract the features on its own. This could
be achieved by directly feeding the incremental strain curve
signals to a convolutional neural network (CNN) as the input
data. We will exploit the capability of convolutional layers to
extract useful knowledge and learn the internal representation
of time-series data [60]. In fact, in CNNs, different features are
extracted through convolution using filters whose weights are
automatically learned during training [61], [62]. In our case,
the automated isochrone generation process would consist of
a regression task [63], in which the CNNs would need to find
the correct ZC positions on the temporal strain curves, and not
classify the strain curves themselves.

Finally, for real-time implementation of EWI, we can
conceive a combination of automated followed by manually
adjusted ZC selection for isochrone generation. In fact, an
observer’s input could help the ML classifier by manually
labeling a limited number of samples for which the algorithm
has the least confidence in (e.g., some of the discarded pixels
with lower ZC voting probabilities when the recall condition
was set to 40%). Through “active learning”, we could therefore
further improve the model’s learning process.

V. CONCLUSION

Electromechanical Wave Imaging with machine learning
was hereby illustrated to automatically detect zero-crossing
time points on incremental axial strain curves for a faster,
more robust, and less operator dependent isochrone generation
process. The Random Forest classifier was identified as the
best performing algorithm compared to logistic regression and
SVM: capable of identifying accessory pathways as well as
pacing locations in humans and canines respectively, while
also resulting in the most precise isochrone activation patterns.
Finally, these findings indicate that the standard manual pro-
cessing pipeline required to obtain EWI activation maps can
now considerably be abbreviated without a significant trade-
off in accuracy, towards real-time implementation of EWI and
its automated translation to the clinic.
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