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Abstract— Passive acoustic mapping enables the1

spatiotemporal monitoring of cavitation with circulating2

microbubbles during focused ultrasound (FUS)-mediated3

blood–brain barrier opening. However, the computational4

load for processing large data sets of cavitation maps5

or more complex algorithms limit the visualization in6

real-time for treatment monitoring and adjustment. In this7

study, we implemented a graphical processing unit8

(GPU)-accelerated sparse matrix-based beamforming and9

time exposure acoustics in a neuronavigation-guided10

ultrasound system for real-time spatiotemporal monitoring11

of cavitation. The system performance was tested in silico12

through benchmarking, in vitro using nonhuman primate13

(NHP) and human skull specimens, and demonstrated14

in vivo in NHPs. We demonstrated the stability of the15

cavitation map for integration times longer than 62.5 µs.16

A compromise between real-time displaying and cavitation17

map quality obtained from beamformed RF data sets with a18

size of 2000×128×30 (axial pixels×lateral pixels×samples)19

was achieved for an integration time of 1.44 µs, which20

required a computational time of 0.27 s (frame rate21

of 3.7 Hz) and could be displayed in real-time between22

pulses at PRF = 2 Hz. Our benchmarking tests show that23

the GPU sparse-matrix algorithm processed the RF data24

set at a computational rate of 0.03 ± 0.01 µs/pixel/sample,25

which enables adjusting the frame rate and the integration26

time as needed. The neuronavigation system with real-time27

implementation of cavitation mapping facilitated the28

localization of the cavitation activity and helped to identify29

distortions due to FUS phase aberration. The in vivo test of30

the method demonstrated the feasibility of GPU-accelerated31

sparse matrix computing in a close to a clinical condition,32

where focus distortions exemplify problems during33

treatment. These experimental conditions show the need34

for spatiotemporal monitoring of cavitation with real-time35

capability that enables the operator to correct or halt the36

sonication in case substantial aberrations are observed.37
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Index Terms— Drug delivery, graphical processing unit 38

(GPU)-acceleration, nonhuman primate (NHP), passive 39

acoustic mapping (PAM), sparse matrix, ultrasound- 40

mediated blood–brain barrier (BBB) opening. 41

I. INTRODUCTION 42

FOCUSED ultrasound (FUS) can drive microbubble- 43

seeded cavitation that enhances drug delivery through the 44

blood–brain barrier (BBB)—a semipermeable structure of the 45

brain vasculature that prevents drug uptake into the central 46

nervous system [1]. FUS-induced cavitation can transiently 47

and locally disrupt the BBB [2] via transcytosis, tight junc- 48

tion opening, and inhibition of active transport proteins in 49

the brain endothelial cells [3]–[5]. Preclinical studies have 50

demonstrated the potential of FUS-mediated BBB opening 51

to deliver variable-sized molecules such as antibody-based 52

anticancer agents [6]–[8], antiamyloid antibodies [6], [9], [10], 53

brain-derived neurotrophic factor [11]–[13], adeno-associated 54

viruses [14], [15], and stem cells [16]. Currently, clinical 55

studies are assessing the safety and feasibility of the technique 56

for the treatment of Alzheimer’s disease [17] and glioblas- 57

toma [18]. 58

Passive cavitation detection (PCD) using single-element 59

transducers has been used to monitor potential harmful cav- 60

itation regime in real-time in open-loop and closed-loop 61

systems [19]–[22] inside and outside the magnetic res- 62

onance imaging (MRI) scanner [23], [24]. However, 63

single-element PCD limits the monitoring to a temporal 64

analysis, where cavitation activity cannot be resolved spa- 65

tially. Neuronavigation-guided ultrasound with real-time pas- 66

sive acoustic mapping (PAM) [25] can provide a high precision 67

therapy at lower cost in comparison to magnetic resonance- 68

guided FUS (MRgFUS) systems. The FUS neuronavigation 69

system allows for planning trajectories toward specific brain 70

targets that avoid pre-existent lesions, large vessels, ventricles, 71

and other brain structures to be circumvented while PAM 72

enables spatiotemporal monitoring of cavitation associated 73

with BBB-opening. The spatial mapping of acoustic cavitation 74

recorded by a multielement transducer is reconstructed using 75

delay-and-sum (DAS) beamforming either in the time or 76

frequency domain [26]–[36]. Altogether, this system can help 77

detect beam aberration due to the skull [32], [37], which could 78

be compensated by repositioning the transducer for an efficient 79
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and safe sonication at the prescribed location, especially when80

multiple sonications are required for covering a larger brain81

volume.82

Modern graphical processing units (GPUs) offer parallel83

processing designed for high-peak computational throughput84

in a short period. Previous studies have demonstrated imple-85

mentations of GPU acceleration, which generated real-time86

visualization of microbubble activity in the brain at variable87

frame rates, sample integration times, number of channels,88

and field-of-view (FOV) (respectively, Collin et al. [38]:89

5 Hz, 4000 samples, 32 channels, and 40 × 10 mm2; Jones90

et al. [37]: 3.3 Hz, 200 samples, 128 channels, and 20×20×2091

mm3; Lyka et al. [34]: 3 Hz, N/A samples, 128 channels, and92

20 × 10 mm2; Lyka et al. [39]: 0.25 Hz and 0. 625 mHz,93

2000 samples, 128 channels, and 660 voxels; Jones et al. [40]:94

1 Hz, 8000 samples, 256 channels, and 10 × 10 × 10 mm3).95

Programmable multiprocessing-unit architectures provide96

library routines optimized for sparse matrices computations,97

which improves real-time performance of numerical opera-98

tions [41], [42]. Data processing with a sparse matrix provides99

higher performance than a fully sampled matrix because100

it eliminates operations with zero-valued elements of the101

matrix. In addition, sparse representation reduces data stor-102

age as it stores only the nonzero elements and their row103

indices. Sparse matrix operations can be accelerated even104

more when performed in parallel using GPU computing.105

Sparsity methods have been employed widely in medical106

imaging [43] to speed up and improve image processing and107

machine-learning techniques in a variety of imaging methods,108

such as MRI [44]–[46], digital pathology images [47], [48],109

computed tomography (CT) [49], [50], and ultrasound [25],110

[51]–[54].111

In this study, we present an implementation of PAM using112

GPU-accelerated sparse matrix-based beamforming and time113

exposure acoustics (TEAs) [55], [27], which can be performed114

in real-time with large maps and short-duration data sets or115

vice versa. This study builds on prior reports by our group116

as indicated by Wu et al. [25], which employed real-time117

PAM focusing on the neuronavigation system implementation,118

where the GPU sparse-matrix implementation was not detailed119

or compared with other standard methods, and Hou et al. [51],120

where active mapping (harmonic motion imaging using tissue121

displacement tracking) was employed, but not in passive122

detection or for microbubble-based therapy monitoring. The123

novel contributions of this article are the detailed description124

of the implementation of the sparse matrix-based algorithm125

for PAM and a benchmarking comparison of the non-sparse126

and sparse implementations in both CPU and GPU. Tests were127

performed in silico through benchmarking, in vitro using skull128

specimens of human and nonhuman primate (NHP), as well129

as in vivo BBB opening experiments in NHP.130

II. MATERIAL AND METHODS131

A. Passive Beamforming Algorithm132

The passive beamforming algorithm based on TEA [27]133

was implemented with a conventional 128-channel linear array134

imaging probe (L7-4, Philips, Bothell, WA, USA; center135

frequency: 5.208 MHz). A programmable ultrasound scan- 136

ner (Vantage 256, Verasonics, Kirkland, WA, USA) recorded 137

the acoustic emissions, with time t, from cavitating bubbles 138

during sonications. The radio frequency (RF) channel data 139

were used to reconstruct the passive cavitation maps using 140

dynamic receive beamforming [
∑N

n=1 Sn(rn, r, t)] and then 141

time-integrated (
∫ Ti

0 | · |2dt) over a period Ti defined as the 142

integration time 143

C(r) =
∫ Ti

0

∣∣∣∣∣
N∑

n=1

Sn(rn, r, t)

∣∣∣∣∣
2

dt (1) 144

Sn(rn, r, t) = cn(t + d(rn, r)/c) (2) 145

where N is the number of elements in the array, Sn is the 146

channel data for the nth element, rn is the location of the 147

nth transducer element, r is the location of the pixel to be 148

reconstructed, cn[t + d(rn, r)/c] the received cavitation signal 149

for the nth channel after adjusting for the time delay based on 150

the distance between rn and r , and c is the speed of sound. 151

Skull-specific aberration corrections were not performed. 152

B. Sparse-Matrix Construction 153

Although GPU-based sparse matrix beamforming has been 154

described elsewhere [25], [51], its specific implementation and 155

application for TEA-PAM is detailed here. In our previous 156

study, the sparse matrix algorithm was implemented using 157

sequences with short imaging pulses. In contrast, therapeutic 158

pulses used in BBB opening are typically composed of thou- 159

sands of acoustic cycles. Therefore, the duration of received 160

RF signals during PAM or the total amount of beamformed 161

data is significantly larger than the active imaging described 162

before. The DAS beamforming was accelerated using the fast 163

sparse matrix operation performed on a GPU [Tesla K40 164

(real-time) or Quadro P6000 (offline processing), NVIDIA, 165

Santa Clara, CA, USA]. All sparse matrix operations were 166

performed in MATLAB (2017b, MathWorks, Natick, MA, 167

USA), which has built-in GPU support for sparse matrices 168

since version 2015a. The computing acceleration was accom- 169

plished by implementing the term
∑N

n=1 Sn(rn, r, t) from (1) 170

using a sparse matrix multiplication followed by temporal 171

summation of the squared beamformed RF data. The sparse 172

matrix multiplication can be written as y = Ax, where the 173

reconstructed RF data y are the result from the multiplication 174

of A, a sparse matrix associated with the DAS operation, and 175

x, a matrix containing the channel data reshaped into column 176

vectors for each sample of the integration time. The number 177

of rows in A is equal to the total number of pixels in the 178

reconstructed image, which is the product of the lateral map 179

size Nx and the axial map size Nz . The number of columns in 180

A is equal to the product of the number of samples acquired 181

per channel Z , and the number of array elements N . Table I 182

presents all values for the parameters used in this study. 183

The sparse matrix was built offline prior to the experiments, 184

as it requires minutes-to-hours of calculation. The computa- 185

tional time depends on the number of samples in the acquired 186

channel data, the number of array elements N , as well as 187

the number of pixels in the reconstructed image (Nx × Nz). 188
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TABLE I
PARAMETERS USED FOR GPU-BASED SPARSE MATRIX

MULTIPLICATION IN PASSIVE ACOUSTIC MAPPING

The sparse matrix was designed here using double-precision to189

compute images of approximately 74 mm (depth, Nz = 2000190

axial pixels) by 38 mm (width, Nx = 128 lateral pixels), with191

Z equal to 2000 samples acquired by N = 128 transducer192

elements (or channels) at sampling frequency 20.8 MHz193

(4 times the receiving center frequency of the L7-4 array,194

which is 5.208 MHz) that can be displayed in real-time once195

the sparse matrix is built. The sparse matrix needs to be built196

offline only once and then can just be loaded into memory for197

real-time beamforming.198

The following describes how to build the reconstruction199

sparse matrix numerically. First, a conventional 3-D matrix200

representation [Fig. 1(a)] containing the distance D in sample201

units between each image pixel and transducer element is202

calculated by203

D = | �rn − �r |Nw (3)204

where �r is the pixel location in the reconstructed image205

in wavelength units, �rn is the location of the nth element206

in wavelength units, and Nw is the number of samples per207

wavelength (Nw = 4, yielding a sampling frequency four208

times the center frequency of the receiving array). The speed209

of sound associated with the wavelength was 1540 m/s, which210

is equal to the speed of sound in water.211

Then, the values in the distance matrix are converted into212

indices associated with the size of a given data point of chan-213

nel data provided by Verasonics Vantage (sample segments214

acquired by each transducer element per frame). The indexed215

distance [Fig. 1(b)] is given by216

i(z, x, n) = D(z, x, n) + (n − 1)Z (4)217

where i is the indexed pixel to element distance in the channel218

data, and Z is the total depth in sample units, with Z = 2000219

samples and n = 1–128. After that, the DAS operation is220

performed to compute the matrix T l(z, x)221

T l(z, x) =
N∑

n=1

((1 − d(z, x, n)) · Bl(i(z, x, n))222

+d(z, x, n) · Bl(i(z, x, n) + 1) (5)223

where l is iterated from 1 to 256 000 (Z × N) and224

d(z, x, n) = mod[D(z, x, n), 1] (6)225

where mod is the modulus operator, and Bl is the lth standard 226

basis vector of the 256 000-dimensional Euclidian space, con- 227

taining zeros everywhere except at the lth position [Bl(i) = 228

δil , where δil is the Kronecker delta, Fig. 1(c) and (d)]. Finally, 229

the sparse matrix A is allocated with nonzero values obtained 230

from the matrix T l , which can be obtained in MATLAB using 231

[kl,∼, sl ] = find(T l(:)), where kl is the vector of indices of 232

nonzero values in T l , and sl is the corresponding vector of 233

nonzero values in T l . The sparse matrix [Fig. 1(e)] is given 234

by 235

A(kl, l) = sl . (7) 236

C. Time Exposure Acoustics Real-Time Processing 237

Once the sparse matrix is loaded in the computer or GPU 238

memory, the RF data can be beamformed in real-time by 239

simply multiplying the sparse matrix by the channel data. This 240

is the only step in the processing where the sparse matrix 241

is used. The acquired data sets comprise 2000 samples per 242

receiving element, that is, a signal duration of 96.1 μs and a 243

sampling frequency of 20.8 MHz. To acquire data sets with 244

reduced integration times that would accelerate computation, 245

the beamformed time-domain signal was truncated at the 246

relevant sample after t = 0. For example, only the first 247

30 samples were used for an integration time of 1.44 μs, 248

the first 300 samples for an integration time of 14.4 μs. 249

An important property of the multiplication using the sparse 250

matrix is that it can be applied regardless of the number 251

of samples, as it refers to a multiplication involving two 252

2-D matrices [Fig. 2(a)]. Then, the cavitation map is obtained 253

from the TEAs processing [(1)] using the beamformed data 254

[Fig. 2(b)]. Finally, the image is reshaped in 2-D (Nz × Nx ) 255

and displayed in real-time [Fig. 2(c)]. 256

D. In Vitro Experiments 257

The in vitro test of the system with and without the skull 258

specimens (NHP and human and parietal bone) was performed 259

in a silicon phantom with a 4-mm-diameter tube where in- 260

house, lipid-shell, monodisperse microbubbles (median diam- 261

eter: 4–5 μm, diluted to 2 × 105 bubbles/mL [56], [57]) 262

circulated at a flow rate of 0.25 mL/s using a syringe pump 263

[Fig. 3(a)]. The skull specimens were degassed 24 h before 264

the experiment. A customized MATLAB code controlled a 265

single-element, 0.5-MHz FUS transducer (diameter: 64 mm 266

and focal depth: 62.6 mm; H-107, Sonic Concepts, Bothell, 267

WA, USA) driven by a function generator (model 33220A, 268

Agilent Technologies, Santa Clara, CA) with 50-dB amplifi- 269

cation (A075, ENI, NY, USA). A PCD array (L7-4, Philips, 270

Bothell, WA, USA; center frequency: 5.208 MHz, sampling 271

frequency: 20.8 MHz, and channel data length: 2000 sam- 272

ples) and a single PCD transducer (Y-107, Sonic Concepts; 273

sensitivity: 10 kHz–15 MHz, sampling frequency: 50 MHz) 274

were simultaneously used to monitor the cavitation generated 275

using derated peak-negative pressure (PNP): 100–600 kPa, 276

pulse length: 5000 cycles (10 ms), pulse repetition frequency 277

(PRF): 10 Hz, duration: 2 s. The skull specimen was placed 278

between the phantom and the PCD array immediately after 279
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Fig. 1. Sparse matrix construction. (a) 3-D matrix of distance from the pixel to transducer element in sample units calculated for an imaging array with
128 elements, and a reconstructed image of 2000 × 128 = 256000 pixels. (b) 3-D matrix of reindexed distance to follow data output by Verasonics
Vantage. (c) Standard basis vectors used for the DAS iterative calculation. (d) Matrix resulting from DAS operation on a given standard basis vector.
(e) Sparse matrix values allocation following 2-D representation.

acquisitions without the skull to assess the skull effects on the280

PCD data in similar experimental conditions.281

E. In Vivo NHP Experiments282

All procedures and experiments with animals were reviewed283

and approved by the Institutional Animal Care and Use284

Committee at Columbia University and the New York State 285

Psychiatric Institute following the National Institutes of Health 286

Guidelines for animal research. The in vivo experiments were 287

performed in two male adult macaques (Macaca mulatta, 288

weight: 9–11 kg, age: 18–20 years old). The FUS trans- 289

ducer was placed on the top of the animal’s head using a 290
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Fig. 2. TEA-PAM real-time algorithm using sparse matrix operation. (a) DAS beamforming algorithm using GPU-accelerated sparse matrix operation.
(b) TEA operation. (c) Cavitation maps.

Fig. 3. Experimental setups for (a) in vitro skull and phantom and (b) in vivo BBB opening in NHP. In the in vitro experiment, the FUS transducer
was placed on the top of the phantom and orthogonal to the PCD array. The skull was placed between the phantom and the PCD array for assessing
the skull effects on the cavitation mapping. In the in vivo experiment, the FUS transducer was targeted to the region-of-interest based on the
neuronavigation coordinates while the PCD array was placed against the temporal bone window toward the FUS focus.

stereotaxic frame for head fixation [Fig. 3(b)], with targets291

set at the caudate-putamen and hippocampus using a neu-292

ronavigation system (Brainsight Vet System, Rogue Research293

Inc., Montreal, QC, Canada). The neuronavigation guidance 294

was performed using anatomical T1-weighted magnetic res- 295

onance (MR) brain images (3-D turbo field echo sequence, 296
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TR/TE = 11.1/5.1 ms, FA = 8◦, and resolution = 0.7 ×297

0.7 × 0.7 mm3; Philips 3 Tesla scanner). The animals received298

in-house manufactured monodisperse microbubbles injected299

intravenously (2.5 × 108 bubbles/kg) and were sonicated for300

2 min (derated peak-negative pressure = 450 kPa, excitation301

frequency = 0.5 MHz, pulse length = 10 ms, and PRF =302

2 Hz). The reported pressures correspond to in situ values, fol-303

lowing transmission through an NHP or human skull, and were304

estimated prior to the experiment using a capsule hydrophone305

(HGL-0200, ±3 dB frequency range: 0.25–40 MHz, electrode306

aperture: 200 mm; Onda Corp., Sunnyvale, CA, USA). The307

cavitation activity was monitored in real-time using the same308

PCD array and single PCD transducer described in the in vitro309

test. The PCD array was aligned with the focal region of the310

FUS transducer using neuronavigation-guidance through the311

skull temporal window (a thinner part of the skull serving as an312

acoustic window). The BBB opening and safety were assessed313

by MR images acquired 1 h after sonication. The BBB314

opening was confirmed by comparing T1-weighted contrast-315

enhanced images (Gd-DTPA-BMA, Omniscan, GE Health-316

care, Princeton, NJ, USA; 0.2 mL/kg) acquired before and317

following the sonication (3-D spoiled gradient echo sequence,318

TR/TE = 8.5/4.8 ms, FA = 8◦, and resolution = 1 × 1 ×319

1 mm3). Safety was evaluated with T2-weighted MR images320

for assessing potential edemas (TR/TE = 3000/80 ms, flip321

angle or FA = 90◦, and resolution = 0.4 × 0.4 × 2 mm3).322

F. Quantification of Acoustic Cavitation Emission Using323

the Single-Element PCD324

Stable cavitation dose (SCDh), stable cavitation dose with325

ultra-harmonics (SCDu), and the inertial cavitation dose (ICD)326

were calculated following the same methodology of previ-327

ous studies [58], [59]. Harmonic components with frequency328

bandwidths of 20 kHz (n × f , where f = 0.5 MHz329

and n = 3, 4, 5 . . . , 10) were extracted from the frequency330

spectrum obtained from the PCD signal in Volts. Similarly,331

ultra-harmonic components (m/2 × f , where f = 0.5 MHz332

and m = 5, 7, 9, . . . , 19) were extracted using the same333

frequency bandwidth size. SCDh was calculated by the root334

mean square (RMS) of the harmonic components, SCDu ,335

by the RMS of the ultra-harmonic components and ICD by336

the RMS of all other components not included in SCDh and337

SCDu , between 1.25 and 5.00 MHz.338

G. Benchmarking339

The first benchmarking test compared the computational340

time and sample processing rate of CPU and GPU341

implementations of the sparse and standard DAS matrix mul-342

tiplication using the NHP in vivo data set (Z = 2000 samples,343

N = 128 elements, Nz = 2000 axial pixels, and344

Nx = 128 lateral pixels). All GPU computations were per-345

formed using GPU-enabled MATLAB functions. Both GPU346

and CPU tests were performed using a number of samples347

NT from 10 to 1500, except for the CPU standard DAS348

implementation that was limited to 500 samples as it reached349

unpractical computational times (several hours). The second350

benchmarking test compared the computational time with351

Z = 2000 samples, N = 128 elements, and NT = 30 352

for different sizes of FOV, where the lateral map size Nx 353

remained constant equal to 128 pixels, and the axial map size 354

varied: Nz = 50, 100, 200, 500, 1000, and 2000 pixels. The 355

testing routines included only the beamforming processing 356

(Fig. 2) and did not include the sparse matrix construction 357

(Fig. 1). Similarly, the memory allocation for the standard 358

processing was disregarded to allow an adequate comparison 359

of processing time only with both methods. The benchmarking 360

was performed offline in a Dell Precision T7910 workstation 361

(dual-processor Intel Xeon CPU E5-2650 v4 at 2.20 GHz, 362

128 GB of RAM) equipped with a GPU (NVIDIA Quadro 363

P6000, 24 GB memory, 3840 cores, driver: 392.56) running 364

MS Windows 10 Pro 64-bits and MATLAB 2017b. 365

III. RESULTS 366

The effect of the integration time Ti on the GPU sparse- 367

matrix algorithm computational time Tc (including both beam- 368

forming time and integration time) and cavitation mapping 369

quality was assessed off-line in phantoms with and without 370

skull specimens. The computational time increased linearly 371

with the integration time as the number of beamformed 372

samples for each cavitation map increased with Ti [Fig. 4(a)]. 373

To achieve real-time monitoring the maximum computational 374

time was limited by the time between pulses (Tc < 1/PRF), 375

which in the case of NHP BBB opening sessions was defined 376

as 0.5 s (for PRF = 2 Hz). A maximum Ti of 1.44 μs was 377

found in order to achieve a real-time cavitation mapping with 378

NT equaling 30 samples. In addition to that, the maximal 379

intensity in the mapping plateaued at approximately 62.5 μs 380

(1300 samples). The maximum intensity for each integration 381

time was defined as the pixel intensity with the highest value 382

in each reconstructed passive map. The −6 dB cavitation 383

region size defined in the map was quantified and found 384

to increase with Ti with a transient formation of discrete 385

spots of cavitation activity during the first 20 μs [Fig. 4(b)]. 386

Then, the cavitation region size decreased, possibly due to 387

the destruction of resonant microbubbles at the periphery 388

of the focus, reaching a steady-state spatial distribution at 389

around 62.5 μs. 390

The cavitation detectability determined by system sensitivity 391

was then tested in phantoms using 62.5-μs integration time 392

for pressure levels ranging from 150 to 600 kPa (Fig. 5). 393

Cavitation maps without the skull showed localized cavitation 394

distributions at all pressure levels [Fig. 5(a)]. Acquisitions 395

with skull samples presented a threshold for cavitation detec- 396

tion at 300 and 450 kPa for NHP skull [Fig. 5(b)] and 397

human skull [Fig. 5(c)], respectively. The cavitation activity 398

was spatially distorted in the presence of both skulls, forming 399

an elongated pattern as a result of the beamforming degra- 400

dation caused by the skull scattering. The pressure thresholds 401

identified here are in the range used for BBB opening in NHP. 402

Following the in vitro experiments, the in vivo experiments 403

were performed in NHP during the BBB opening sessions. 404

The PCD array was placed on the temporal window aiming at 405

the FUS targeted area, with the PAM plane covering a lateral 406

cross section of the FUS focus [Fig. 6(a)]. The BBB opening 407
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Fig. 4. Effect of integration time on computational time and cavitation mapping characteristics. (a) Computational time Tc increased linearly with the
integration time Ti, which limited the integration time to a maximum of 1.44 µs for PRF = 2 Hz (0.5 s of pulse repetition period). (b) Ti also affected
the mapping quality with lower values providing maps with discrete cavitation spots out of focus and values higher than 62.5 µs reaching a steady
state of cavitation map. This representative case was performed at 450 kPa. Computational times Tc refers to the reconstruction of large acoustic
maps (2000 axial pixels × 128 lateral pixels).

and monitoring result at 450 kPa obtained from NHP 1 is408

shown in Fig. 6(a). The frequency spectra from the beam-409

formed signals at the location of maximum image intensity410

acquired during control and acquisitions with microbubbles411

are shown in Fig. 6(b). The cavitation levels obtained from412

the single-element PCD acquisition following spectral filtering413

showed a substantial increase of both stable and inertial414

cavitation once microbubbles perfused the brain [Fig. 6(c)].415

The cavitation intensity [Fig. 6(d)] obtained from consecutive416

cavitation maps [Fig. 6(e)] was qualitatively consistent with417

the cavitation activity observed with the single-element PCD.418

The single-element PCD traces are presented with independent419

components cavitation (harmonic, ultra-harmonic, and iner-420

tial), whereas the cavitation activity detected by the PCD array421

shows the total activity without spectral filtering.422

The results from the second test performed at 450 kPa in the423

NHP 2 are shown in Fig. 7. In this case, only stable cavitation424

was observed from data acquired with the single-element PCD425

[Fig. 7(c)]. The majority of the observed stable cavitation was 426

harmonic-based, with only a few pulses having ultra-harmonic 427

dose higher than the baseline. The frequency spectra obtained 428

with the PCD array at the location of maximum image inten- 429

sity are shown in Fig. 7(b). As shown in the previous studies, 430

the skull attenuation is highly variable across different skull 431

locations and across animals due to bone thickness variation 432

and different ratios of cortical to trabecular bone [22], [60]. 433

The variation of the skull attenuation contributed to the dif- 434

ferences in the signal components using the single-element 435

and PCD array [Fig. 7(c) and (d)]. In addition, the single- 436

element PCD presents a higher sensitivity and much broader 437

frequency bandwidth. The single-element PCD had a higher 438

sampling frequency (50 MHz versus 20.8 MHz) than the 439

PCD array, thereby providing spectra at higher frequencies 440

without aliasing. These differences highlight the importance 441

of multiple cavitation detectors for safety redundancy. The 442

cavitation maps in the logarithmic intensity scale (in decibel) 443
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Fig. 5. Cavitation mapping sensitivity through primate skull. Cavitation maps using 62.5-µs integration time at variable pressure levels were acquired
(a) without a skull, (b) with NHP skull, and (c) with human skull between the PCD array and the phantom.

Fig. 6. Cavitation activity recorded during BBB opening in NHP 1.
(a) BBB opening (in color) induced by sonication at 450 kPa revealed
in contrast-enhanced T1-weighted MR image. (b) Frequency spectra
obtained from the beamformed signal at the location of maximum
image intensity. (c) Cavitation activity evaluated with a single-element
PCD transducer (cavitation dose). (d) Normalized power detected with
a PCD array positioned at the temporal window and a single-element
PCD transducer co-aligned with the FUS transducer. Power was defined
as the sum of squared beamformed data using 1.44-µs integration time
for the PCD array and the entire signal duration for the single-element
PCD transducer. (e) Spatial distribution of the cavitation activity shown
in cavitation maps (−6 dB) for different samples.

were used for monitoring both the spatial location and intensity444

of cavitation over time [Fig. 7(e)]. Interestingly, cavitation445

events were detected in two locations, possibly caused by446

Fig. 7. Cavitation activity recorded during BBB opening in NHP 2.
(a) BBB opening (in color) induced by sonication at 450 kPa revealed
in contrast-enhanced T1-weighted MR image. (b) Frequency spectra
obtained from the beamformed signal at the location of maximum image
intensity. (c) Cavitation dose detected using a single-element PCD trans-
ducer indicating only stable cavitation throughout the sonication duration.
(d) Normalized power detected with a PCD array positioned at the
temporal window and a single-element PCD transducer co-aligned with
the FUS transducer using 1.44-µs integration time. (e) Reconstructed
cavitation maps (−6 dB) for different samples.

cavitation in the neighboring larger vessels or caused by the 447

sidelobes of the FUS beam. 448

The benchmarking revealed that sparse matrix operation 449

improved both GPU and CPU performance. The computational 450
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Fig. 8. Benchmarking for sparse matrix operation. (a) Computational
time of CPU and GPU implementations for the sparse matrix multipli-
cation and standard DAS using the NHP in vivo data set for integrated
sample NT varying from 10 to 1500 (Z: 2000 samples, N: 128 elements,
Nx: 128 lateral pixels, and Nz: 2000 axial pixels). (b) Sample processing
rate at the same conditions. (c) Computational time with NT = 30 for
different sizes of FOV, where the lateral map size Nx remained constant
equal to 128 pixels and the axial map size varied: Nz = 50, 100, 200,
500, 1000, and 2000 pixels. The benchmarking was performed offline
in a Dell Precision T7910 workstation (dual processor Intel Xeon CPU
E5-2650 v4 at 2.20 GHz, 128 GB of RAM) equipped with a GPU (NVIDIA
Quadro P6000, 24 GB memory, 3840 cores, driver: 392.56) running MS
Windows 10 Pro 64 bits and MATLAB 2017b.

time had a linear relation with the number of samples, and451

it is presented in the log scale as the CPU standard DAS452

implementation resulted in computational times four orders453

of magnitude higher than the GPU sparse implementation454

[Fig. 8(a)]. In GPU, the sparse matrix performed approxi-455

mately 50 times faster than the standard DAS matrix, whereas, 456

in CPU, the same comparison resulted in approximately 457

600 times difference. Interestingly, the CPU sparse and GPU 458

standard DAS implementations presented similar results with 459

sample processing rates of 7.3 and 7.5 s−1, respectively 460

[Fig. 8(b)]. On the other side, the GPU standard DAS imple- 461

mentation presented a much higher average sample processing 462

rate of 360.8 s−1. Similarly, for a fixed number of samples 463

NT = 30, the sparse matrix implementation reduced the com- 464

putational time for variable FOV sizes [Fig. 8(c)]. The GPU 465

sparse matrix implementation decreased the computational 466

time by a minimum of 21.9 times (FOV: 50 × 128 pixels) 467

in comparison with GPU standard matrix implementation and 468

a maximum of 55.3 times (FOV: 2000 × 128 pixels) with an 469

average of 28.5 times across different FOVs. The sparse matrix 470

performed on CPU was an average of 617 times faster than the 471

CPU standard implementation and 1.33 times faster than the 472

GPU standard implementation. The processing times required 473

per PAM pixel for FOV varying from 50 to 2000 pixels 474

axially×128 pixels laterally using 30 samples were on average 475

0.03 ± 0.01, 0.51 ± 0.01, 0.67 ± 0.09, and 311.71 ± 476

3.94 μs/pixel/sample for GPU sparse, CPU sparse, GPU 477

standard, and CPU standard implementations, respectively. For 478

both CPU and GPU implementations, the sparse matrix was 479

loaded in the memory prior to the time testing routines. Simi- 480

larly, for the standard DAS method, the time for memory allo- 481

cation was disregarded. The loading time was 6.86 ± 0.13 s 482

and the CPU–GPU transfer time was 0.79 ± 0.06 s. 483

IV. DISCUSSION 484

In this study, we demonstrated the implementation of sparse 485

matrix beamforming and TEAs on a GPU for real-time tran- 486

scranial cavitation mapping. The system was tested in vitro 487

using human and NHP skull specimens, which allowed to 488

investigate the computational time for real-time cavitation 489

mapping, and in vivo during ultrasound-mediated BBB open- 490

ing sessions in NHP, which allowed to test the setup and 491

algorithm in a close to clinical setup condition. 492

The summation over the integration time used in the TEA 493

algorithm enhanced the continuously scattered signal from 494

microbubbles by suppressing the background noise, which 495

affected the mapping quality and homogeneity of cavitation 496

distribution [61], [62]. Noisier maps (discrete cavitation spots 497

outside the transducer focus potentially associated with very 498

transient bubble activity) were found in vitro for short inte- 499

gration times, while a steady cavitation distribution could 500

be achieved with long integration time duration (>62.5 μs). 501

Despite the higher SNR achieved with a high number of 502

beamformed samples, the computational load and the number 503

of frames were limited by the total integration time to lie 504

within the pulse repetition period. For the PRF used in the 505

test in vivo (2 Hz), 30 samples could be reconstructed for 506

an integration time of 1.44 μs. The increased number of 507

pixels in the axial direction (i.e., 2000) was chosen based on 508

active imaging parameters; however, the pixel size of 37 μm 509

is significantly smaller than the nominal passive acoustic 510

mapping resolution at these imaging depths. The nominal axial 511

resolution of PAM would be equal to 2.1 mm, assuming an 512
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imaging depth of 40 mm, an aperture size of 38.4 mm, and a513

mean receive wavelength of 0.28 mm [63]. As demonstrated514

by the benchmarking, the sparse matrix density (Nx × Nz by515

N ×Z) and the RF data set density (N× Z by NT ) [Fig. 2(a)]516

can be modified, which ultimately changes the computational517

time at a rate of 0.03 ± 0.01 μs/pixel/sample. Therefore,518

a reduced number of pixels can accelerate the processing,519

which allows a longer integration time. Future work will520

involve cavitation maps with a larger axial pixel size, to accel-521

erate computation times and enable real-time mapping with522

the integration of longer data sets, while preserving spatial523

information. As previously reported by Acconcia et al. [64],524

the microseconds time scale can potentially provide insights525

into bubble dynamics, such as the rapid bubble cloud evolution526

and its stochastic nature, as opposed to long integration times.527

Furthermore, the majority of cavitation activity is constrained528

within the first hundreds of microseconds of an ms-long529

therapeutic pulse. Previous in vitro work has shown that 80%530

of the total cavitation energy is emitted within 200 μs (or531

0.2% of the total pulse length) during therapeutic ultrasound532

exposure [65], [66]. This is likely due to the destruction of533

resonant microbubbles at the beginning of the therapeutic534

pulses, with smaller nonresonant microbubbles emitting lower535

cavitation energy for the remainder of the pulse. Future studies536

will correlate time exposure with bubble dynamics observed537

with high speed videography [67]. The pressure thresholds538

for the cavitation detection through human and NHP parietal539

bone specimens using the PCD array were in the range of540

pressure employed in previous studies [25], [58], [59], [68].541

These results demonstrate the capability of the system to map542

spatial and temporal microbubble activity in real-time.543

The benchmarking results revealed that the sparse matrix544

operation can decrease considerably the computational time545

in both CPU and GPU. For the computer configuration tested546

here, the CPU sparse implementation performed very similar547

to the GPU standard DAS implementation. Despite differences548

that other computer configurations may present (i.e., less pow-549

erful CPU processors with more powerful GPU), the sparse550

matrix operation is demonstrated to be a feasible solution for551

decreasing the computational time of operations with dense552

data sets, which enables either larger FOV or larger data sets553

relevant to therapeutic applications. An interesting character-554

istic of the sparse matrix operation is that it can be applied555

regardless of the number of processed samples, thus the556

integration time can be adapted easily to result in high image557

quality based on the trade-off of integration time and real-time558

visualization. It is important to note that similar operation is559

not practical with a fully sampled reconstruction matrix as for560

the data set used here matrix (256 000 × 256 000), the fully561

sampled matrix would require 488.3 GB of computer memory562

as opposed to sparse representation that requires only 1.05 GB.563

On the other hand, the sparse matrix-based beamforming564

presents limitations such as the need to construct the sparse565

matrix [(3)–(5)] offline and several hours prior to its use.566

This method requires time-consuming iterative calculations567

and memory allocation to allow the element indentation. This568

is partially resolved as only a single matrix construction at569

the highest sampling is needed. Then, the matrix can be570

downsampled to adjust to any reduced FOV or channel data 571

size. Once the sparse matrix size is adjusted, the multiplication 572

of the sparse matrix and channel data can be performed, which 573

will result in the beamformed data. The allocation of the 574

pre-constructed sparse matrix in the computer or GPU memory 575

is performed only once and it takes a few seconds, which will 576

depend on the computer performance and sparse matrix size. 577

Next, we demonstrated an in vivo test of our system 578

during FUS-mediated BBB opening session in NHP. The 579

skull presents high variability in the thickness, variable pro- 580

portion of cortical, and trabecular bone distribution across 581

skull regions, and, subsequently, high variability of the ultra- 582

sound attenuation [60]. Therefore, it is important to monitor 583

cavitation activity with as low attenuation as possible, espe- 584

cially since high frequency emissions from microbubbles are 585

more heavily attenuated through the skull. Cavitation mapping 586

was, therefore, performed through the thin temporal bone, 587

which presents lower attenuation than other skull bones. 588

This experimental configuration was shown to be viable at 589

mapping cavitation activity and demonstrated the feasibility 590

of GPU-accelerated sparse matrix computing in a close to 591

clinical setup. The system was qualitatively compared against 592

single-element PCD acquisitions, which presented the same 593

trend for the cavitation activity. PCD with both single-element 594

and multielement transducers was performed to illustrate the 595

qualitative similarities in the temporal evolution of the detected 596

signals [Figs. 6(d) and 7(d)]. However, we have used the 597

normalized values, because a direct quantitative comparison 598

is not possible, due to different receiving center frequencies, 599

sensitivity patterns, and sampling frequencies. In the foreseen 600

clinical use, device limitations can be ameliorated by using 601

multiple safety monitoring redundancies, which in this case 602

both single-element and array transducers can detect indepen- 603

dently potentially high-risk cavitation activity. Future imple- 604

mentations will include simulations based on CT-scans [35], 605

[37], [69] with the co-registration of MR images from the 606

neuronavigator and simulated acoustic beam profiles. 607

Beamforming degradation caused by the diffraction pattern 608

of the receiving array and interference caused by multiple 609

bubbles emitting acoustic signals at the same time generated 610

spatial distortions of cavitation activity, which resulted in 611

an elongated pattern of cavitation activity. Differences in 612

the beam shift can be explained due to differences in the 613

skull curvatures of human and NHP specimens. As previously 614

reported [32], [61], [69], potential focal shifts may be present, 615

but were not studied here. Differences in the human and NHP 616

specimen size forced different positioning of the imaging array 617

in relation to the therapeutic transducer. Thus, the location 618

of focus was not consistent across acquisitions. Nevertheless, 619

the focal distortion is an example of problems encountered 620

during treatment that shows the need of real-time spatial 621

monitoring of cavitation. 622

Frequency-domain approaches can significantly accelerate 623

processing even without a GPU, due to the spectral filtering 624

of narrowband harmonics or ultraharmonics [35], [36]. How- 625

ever, the quality and speed of such approaches depends on 626

the pulse length. Shortening the pulse length leads to pro- 627

gressively wider harmonic and ultra-harmonic peaks, thereby 628
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increasing the integration bandwidth and computational load.629

Furthermore, discrimination of different cavitation modes, e.g.,630

inertial versus non-inertial cavitation, becomes increasingly631

more difficult with shorter pulse lengths. Therefore, frequency-632

domain algorithms need to be modified for different excitation633

sequences, especially for the examined frequency windows.634

Finally, to calculate the total acoustic energy emitted by the635

exposed microbubbles, one needs to integrate throughout the636

frequency domain, which negates the need for frequency-based637

analysis.638

On the other hand, time-domain approaches can be very639

slow when examining long RF signals with a traditional CPU640

approach [Fig. 8(a)]. Time-domain DAS is a simple process641

inducing a relatively low computational load and provides642

direct information about the total cavitation energy produced643

within the focus, regardless of the pulse length or cavitation644

mode. Cavitation energy has been previously correlated with645

the induced bioeffect, such as the drug delivery efficiency [70].646

The same algorithm can be applied without modification647

using any excitation sequences, ranging from μs-long pulse648

sequences for BBB opening [71] to s-long sequences for HIFU649

ablation [30]. Our study describes a method for accelerating650

time-domain PAM for both CPU- and GPU-based systems651

(Fig. 8) across a broad spectrum of ultrasound therapies.652

Sparse-matrix multiplication provides a general method to653

accelerate PAM processing at any pulse length [Fig. 8(a)] or654

map size [Fig. 8(c)].655

The sparse matrix implementation demonstrated here656

employed a simple DAS algorithm that allowed for accel-657

erated image acquisitions. However, as previously described658

by Haworth et al. [36], the axial resolution using this algo-659

rithm can be ten times worse than lateral resolution when660

using small-aperture 1-D receiver arrays. When large-aperture661

2-D receiver arrays are employed the axial dimension of662

the point-spread function obtained via DAS beamforming is663

approximately twice that of its lateral counterpart [61], [72],664

[73]. As we demonstrated in NHP, this can be partially665

overcome by changing the orientation of the passive array at666

an acute angle using the temporal window so the mapping667

can be provided with a compromise of resolution between the668

axial and lateral orientations (worst case in coaxial orientation669

with the therapy transducer). In addition, introduction of the670

skull may have caused shifts in the position of cavitation671

activity in reconstructed images. Yet, the algorithm tested in672

this study demonstrates the capability of the GPU-accelerated673

sparse matrix operation using large RF data sets. Despite674

the higher spatial resolution achieved with more sophisticated675

algorithms such as the robust Capon beamforming [74], [75],676

its computational load is still challenging for GPU-processing.677

We recognize that including a comparison against other cavita-678

tion mapping algorithms would have been desirable; however,679

limited key information and expertise in alternative methods680

would yield misrepresentative conclusions. Coded excitation681

can also be implemented to improve the confinement of682

microbubble activity [76] and the decoding on receive could683

enable higher SNR [77]. Additionally, implementation of a684

closed-loop feedback control for cavitation mapping may be685

beneficial for online treatment optimization [78]. This would686

provide a more reliable control of the microbubble activity 687

from regions inside the brain while avoiding artifact from other 688

sources such as acoustic coupling media or regions outside the 689

brain [22]. In our future work, L7-4 will be replaced with a 690

lower frequency array, to facilitate cavitation mapping through 691

the human skull and reduce aberrations occurring at higher 692

frequencies. 693

Finally, the sparse matrix implementation in GPU is a 694

feasible method for accelerating image formation. This method 695

can enable enlarging the FOV that could potentially help 696

identify in real time off-target cavitation activity. In the context 697

of this study, real-time imaging was enabled only for extremely 698

short integration times (i.e., 1.44-μs duration or 30 samples). 699

Future work will involve generation of maps with a reduced 700

number of pixels but larger pixel sizes in the axial direction, 701

in order to accelerate beamforming of longer data sets. Such 702

a reduction of the axial pixel number by—for example—50- 703

fold would lead to an equivalent increase of the permissible 704

integration time by 50-fold. Together with the neuronavigation 705

system [25], the therapeutic transducer could be realigned 706

at normal incidence angles [79] during sonication or the 707

sonication could be halted if substantial beam aberrations are 708

observed. 709

V. CONCLUSION 710

Passive acoustic mapping has a great potential in clinical 711

cavitation-based FUS applications especially for monitoring 712

and guiding the treatments. A detailed implementation of 713

sparse matrix beamforming on a GPU for cavitation mapping 714

is demonstrated here as a method to accelerate processing. 715

We demonstrate with in vitro and in vivo tests that the GPU- 716

based sparse matrix method can accelerate passive acoustic 717

mapping compared to standard GPU or CPU processing, and 718

allow real-time processing of large maps (e.g., 2000 axial 719

pixels × 128 lateral pixels) with limited integration times 720

(e.g., 30 samples). This methodology was proven efficient for 721

both CPU and GPU implementations. Moreover, cavitation 722

mapping through the human skull bone showed the feasibility 723

to use this technique in clinical applications. Finally, the 724

real-time capability together with the neuronavigation system 725

enables the operator to correct or halt sonications in case 726

substantial aberrations are observed. 727
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